47
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Enhanced generation of megakaryocytes from umbilical cord blood-derived CD34+ cells expanded in the presence of two nutraceuticals, docosahexanoic acid and arachidonic acid, as supplements to the cytokine-containing medium

, , &
Pages 114-128 | Received 10 Jul 2009, Accepted 31 Dec 2009, Published online: 15 Mar 2010

References

  • Kratz-Albers K, Scheding S, Mohle R, Buhring HJ, Baum CM, McKearn JP, . Effective ex vivo generation of megakaryocytic cells from mobilized peripheral blood CD34+ cells with stem cell factor and promegapoietin. Exp Hematol. 2000;28:335–46.
  • Lin S, Liu S, Sun X, Yang M. [Studies on ex vivo expansion of megakaryocytic progenitor and its application: review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2006;14:835–9.
  • Drayer AL, Smit Sibinga CT, Esselink MT, de Wolf JT, Vellenga E. In vitro megakaryocyte expansion in patients with delayed platelet engraftment after autologous stem cell transplantation. Ann Hematol. 2002;81:192–7.
  • Laplante AF, Germain L, Auger FA, Moulin V. Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions. FASEB J. 2001;15:2377–89.
  • Matsunaga T, Tanaka I, Kobune M, Kawano Y, Tanaka M, Kuribayashi K, . Ex vivo large-scale generation of human platelets from cord blood CD34+ cells. Stem Cells. 2006;24:2877–87.
  • Patel SR, Hartwig JH, Italiano JE, Jr. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest. 2005;115:3348–54.
  • Bertolini F, Battaglia M, Pedrazzoli P, Da Prada GA, Lanza A, Soligo D, . Megakaryocytic progenitors can be generated ex vivo and safely administered to autologous peripheral blood progenitor cell transplant recipients. Blood. 1997;89:2679–88.
  • Decaudin D, Vantelon JM, Bourhis JH, Farace F, Bonnet ML, Guillier M, . Ex vivo expansion of megakaryocyte precursor cells in autologous stem cell transplantation for relapsed malignant lymphoma. Bone Marrow Transplant. 2004;34:1089–93.
  • Scheding S, Bergmannn M, Rathke G, Vogel W, Brugger W, Kanz L. Additional transplantation of ex vivo generated megakaryocytic cells after high-dose chemotherapy. Haematologica. 2004;89:630–1.
  • Kanamaru S, Kawano Y, Watanabe T, . Low numbers of megakaryocyte progenitors in grafts of cord blood cells may result in delayed platelet recovery after cord blood cell transplant. Stem Cells. 2000;18:190–5.
  • Chang Y, Bluteau D, Debili N, Vainchenker W. From hematopoietic stem cells to platelets. J Thromb Haemost. 2007;5(Suppl 1):318–27.
  • Gibbins J and Mahaut-Smith M. Platelets & Megakaryocytes Vol.1. Functional assay. Methods in Mol. Biol, 2004; Page nos. 29-46, 225-268, 293-308. Humana Press Inc, Totowa, New Jersy, USA.
  • Pick M, Eldor A, Grisaru D, Zander AR, Shenhav M, Deutsch VR. Ex vivo expansion of megakaryocyte progenitors from cryopreserved umbilical cord blood. A potential source of megakaryocytes for transplantation. Exp Hematol. 2002;30:1079–87.
  • Bruno S, Gunetti M, Gammaitoni L, Dane A, Cavalloni G, Sanavio F, . In vitro and in vivo megakaryocyte differentiation of fresh and ex-vivo expanded cord blood cells: rapid and transient megakaryocyte reconstitution. Haematologica. 2003;88:379–87.
  • Bruno S, Gunetti M, Gammaitoni L, Perissinotto E, Caione L, Sanavio F, . Fast but durable megakaryocyte repopulation and platelet production in NOD/SCID mice transplanted with ex-vivo expanded human cord blood CD34+ cells. Stem Cells. 2004;22:135–43.
  • Sun L, Tan P, Yap C, Hwang W, Koh LP, Lim CK, . In vitro biological characteristics of human cord blood-derived megakaryocytes. Ann Acad Med Singapore. 2004;33: 570–5.
  • De Bruyn C, Delforge A, Martiat P, Bron D. Ex vivo expansion of megakaryocyte progenitor cells: cord blood versus mobilized peripheral blood. Stem Cells Dev. 2005;14: 415–24.
  • Ju XL, Shi Q, Huang ZW, Hou HS, Sun NZ, Zhao Y, . [In vitro expansion and function of cord blood megakaryocyte]. Zhonghua Er Ke Za Zhi 2007;45:64–8.
  • Cortin V, Pineault N, Garnier A. Ex vivo megakaryocyte expansion and platelet production from human cord blood stem cells. Methods Mol Biol. 2009;482:109–26.
  • Boyer L, Robert A, Proulx C, Pineault N. Increased production of megakaryocytes near purity from cord blood CD34+ cells using a short two-phase culture system. J Immunol Methods. 2008;332:82–91.
  • Van den Oudenrijn S, dem Borne AE, de Haas M. Differences in megakaryocyte expansion potential between CD34+ stem cells derived from cord blood, peripheral blood, and bone marrow from adults and children. Exp Hematol. 2000;28:1054–61.
  • Mattia G, Milazzo L, Vulcano F, Pascuccio M, Macioce G, Hassan HJ, . Long-term platelet production assessed in NOD/SCID mice injected with cord blood CD34+ cells, thrombopoietin-amplified in clinical grade serum-free culture. Exp Hematol. 2008;36:244–52.
  • Chen TW, Yao CL, Chu IM, Chuang TL, Hsieh TB, Hwang SM. Large generation of megakaryocytes from serum-free expanded human CD34+ cells. Biochem Biophys Res Commun. 2009;378:112–17.
  • Chen TW, Yao CL, Chu IM, Chuang TL, Hsieh TB, Hwang SM. Characterization and transplantation of induced megakaryocytes from hematopoietic stem cells for rapid platelet recovery by a two-step serum-free procedure. Exp Hematol 2009;37:1330–9.
  • Feng Y, Zhang L, Xiao ZJ, Li B, Liu B, Fan CG, . An effective and simple expansion system for megakaryocyte progenitor cells using a combination of heparin with thrombopoietin and interleukin-11. Exp Hematol. 2005;33:1537–43.
  • Kashiwakura I, Takahashi K, Monzen S, Nakamura T, Takagaki K. Ex vivo expansions of megakaryocytopoiesis from placental and umbilical cord blood CD34+ cells in serum-free culture supplemented with proteoglycans extracted from the nasal cartilage of salmon heads and the nasal septum cartilage of whale. Life Sci. 2008;82:1023–31.
  • O'Brien JJ, Spinelli SL, Tober J, Blumberg N, Francis CW, Taubman MB, . 15-deoxy-delta12,14-PGJ2 enhances platelet production from megakaryocytes. Blood. 2008;112:4051–60.
  • Morris D. H. Flax - A Health and Nutrition Primer, Fourth Edition, 2007; 20-27. published by Flax Council of Canada, Winnipeg, MB R3B0T6, Canada.
  • De Lorgeril M. Essential polyunsaturated fatty acids, inflammation, atherosclerosis and cardiovascular diseases. Subcell Biochem. 2007;42:283–97.
  • Mori TA, Woodman RJ. The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. Curr Opin Clin Nutr Metab Care. 2006;9:95–104.
  • Brand A, Schonfeld E, Isharel I, Yavin E. Docosahexaenoic acid-dependent iron accumulation in oligodendroglia cells protects from hydrogen peroxide-induced damage. J Neurochem. 2008;105:1325–35.
  • Krishnamurti C, Stewart MW, Cutting MA, Rothwell SW. Assessment of omega-fatty-acid-supplemented human platelets for potential improvement in long-term storage. Thromb Res. 2002;105:139–45.
  • Eritsland J. Safety considerations of polyunsaturated fatty acids. Am J Clin Nutr. 2000;71:197S–201S.
  • Holub BJ. Clinical nutrition. 4. Omega-3 fatty acids in cardiovascular care. Canadian Medical Association Journal. 2002;166:608–15.
  • Rizzo MT. The role of arachidonic acid in normal and malignant hematopoiesis. Prostaglandins Leukot Essent Fatty Acids. 2002;66:57–69.
  • Nelson GJ, Schmidt PS, Bartolini GL, Kelley DS, Kyle D. The effect of dietary docosahexaenoic acid on platelet function, platelet fatty acid composition, and blood coagulation in humans. Lipids. 1997;32:1129–36.
  • Nelson GJ, Schmidt PC, Bartolini G, Kelley DS, Kyle D. The effect of dietary arachidonic acid on platelet function, platelet fatty acid composition, and blood coagulation in humans. Lipids. 1997;32:421–5.
  • Vericel E, Polette A, Bacot S, Calzada C, Lagarde M. Pro- and antioxidant activities of docosahexaenoic acid on human blood platelets. J Thromb Haemost. 2003;1:566–72.
  • Won JH, Cho SD, Park SK, Lee GT, Baick SH, Suh WS, . Thrombopoietin is synergistic with other cytokines for expansion of cord blood progenitor cells. J Hematother Stem Cell Res. 2000;9:465–73.
  • Xu Y, Kashiwakura I, Takahashi TA. High sensitivity of megakaryocytic progenitor cells contained in placental/umbilical cord blood to the stresses during cryopreservation. Bone Marrow Transplant. 2004;34:537–43.
  • Miyazaki R, Ogata H, Iguchi T, Sogo S, Kushida T, Ito T, . Comparative analyses of megakaryocytes derived from cord blood and bone marrow. Br J Haematol. 2000;108:602–9.
  • Drayer AL, Sibinga CT, Blom NR, De Wolf JT, Vellenga E. The in vitro effects of cytokines on expansion and migration of megakaryocyte progenitors. Br J Haematol. 2000;109: 776–84.
  • Tijssen MR, van der Schoot CE, Voermans C, Zwaginga JJ. The (patho)physiology of megakaryocytopoiesis: from thrombopoietin in diagnostics and therapy to ex vivo generated cellular products. Vox Sang. 2004;87(Suppl 2): 52–5.
  • Heemskerk JW, Vossen RC, Dam-Mieras MC. Polyunsaturated fatty acids and function of platelets and endothelial cells. Curr Opin Lipidol. 1996;7:24–29.
  • Szalai G, LaRue AC, Watson DK. Molecular mechanisms of megakaryopoiesis. Cell Mol Life Sci. 2006;63:2460–76.
  • Hamada T, Mohle R, Hesselgesser J, Hoxie J, Nachman RL, Moore MA, . Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation. J Exp Med. 1998;188:539–48.
  • Riviere C, Subra F, Cohen-Solal K, Cordette-Lagarde V, Letestu R, Auclair C, . Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood. 1999;93:1511–23.
  • Ryu KH, Chun S, Carbonierre S, Im SA, Kim HL, Shin MH, . Apoptosis and megakaryocytic differentiation during ex vivo expansion of human cord blood CD34+ cells using thrombopoietin. Br J Haematol. 2001;113:470–8.
  • Kaushansky K. The enigmatic megakaryocyte gradually reveals its secrets. Bioessays. 1999;21:353–60.
  • Zeuner A, Signore M, Martinetti D, Bartucci M, Peschle C, De Maria R. Chemotherapy-induced thrombocytopenia derives from the selective death of megakaryocyte progenitors and can be rescued by stem cell factor. Cancer Res. 2007;67:4767–73.
  • Arita K, Kobuchi H, Utsumi T, Takehara Y, Akiyama J, Horton AA, . Mechanism of apoptosis in HL-60 cells induced by n-3 and n-6 polyunsaturated fatty acids. Biochem Pharmacol. 2001;62:821–8.
  • Cao Y, Pearman AT, Zimmerman GA, McIntyre TM, Prescott SM. Intracellular unesterified arachidonic acid signals apoptosis. Proc Natl Acad Sci USA. 2000;97: 11280–5.
  • Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, . Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142: 3590–7.
  • Tang DG, Guan KL, Li L, Honn KV, Chen YQ, Rice RL, . Suppression of W256 carcinosarcoma cell apoptosis by arachidonic acid and other polyunsaturated fatty acids. Int J Cancer. 1997;72:1078–87.
  • Florent S, Malaplate-Armand C, Youssef I, Kriem B, Koziel V, Escanye MC, . Docosahexaenoic acid prevents neuronal apoptosis induced by soluble amyloid-beta oligomers. J Neurochem. 2006;96:385–95.
  • Papadimitriou A, King AJ, Jones PM, Persaud SJ. Anti-apoptotic effects of arachidonic acid and prostaglandin E2 in pancreatic beta-cells. Cell Physiol Biochem. 2007;20:607–16.
  • Ivanovic Z, Duchez P, Dazey B, Hermitte F, Lamrissi-Garcia I, Mazurier F, . A clinical-scale expansion of mobilized CD34+ hematopoietic stem and progenitor cells by use of a new serum-free medium. Transfusion. 2006;46:126–31.
  • Guillot N, Debard C, Calzada C, Vidal H, Lagarde M, Vericel E. Effects of docosahexaenoic acid on some megakaryocytic cell gene expression of some enzymes controlling prostanoid synthesis. Biochem Biophys Res Commun. 2008;372:924–8.
  • Richard D, Kefi K, Barbe U, Bausero P, Visioli F. Polyunsaturated fatty acids as antioxidants. Pharmacol Res. 2008;57:451–5.
  • Maziere C, Conte MA, Degonville J, Ali D, Maziere JC. Cellular enrichment with polyunsaturated fatty acids induces an oxidative stress and activates the transcription factors AP1 and NFkappaB. Biochem Biophys Res Commun. 1999;265: 116–22.
  • McCrann DJ, Eliades A, Makitalo M, Matsuno K, Ravid K. Differential expression of NADPH oxidases in megakaryocytes and their role in polyploidy. Blood. 2009;114:1243–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.