36
Views
2
CrossRef citations to date
0
Altmetric
Review

Improving clinical outcomes using adoptively transferred immune cells from umbilical cord blood

, , &
Pages 713-720 | Received 22 Jul 2010, Accepted 13 Aug 2010, Published online: 06 Sep 2010

References

  • Seggewiss R, Einsele H. Immune reconstitution after allogeneic transplantation and expanding options for immunomodulation: an update. Blood. 2010;115:3861–8.
  • Szabolcs P, Niedzwiecki D. Immune reconstitution after unrelated cord blood transplantation. Cytotherapy. 2007;9:111–22.
  • Barker JN, Rocha V, Scaradavou A. Optimizing unrelated donor cord blood transplantation. Biol Blood Marrow Transplant. 2009;15:154–61.
  • Gluckman E. Ten years of cord blood transplantation: from bench to bedside. Br J Haematol. 2009;147:192–9.
  • Garcia J. Allogeneic unrelated cord blood banking worldwide: an update. Transfus Apher Sci. 2010;42:257–63.
  • Gluckman E. History of cord blood transplantation. Bone Marrow Transplant. 2009;44:621–6.
  • Escalon MP, Komanduri KV. Cord blood transplantation: evolving strategies to improve engraftment and immune reconstitution. Curr Opin Oncol. 2010;22:122–9.
  • Locatelli F. Improving cord blood transplantation in children. Br J Haematol. 2009;147:217–26.
  • Vilmer E, Sterkers G, Rahimy C, Elion J, Broyart A, Lescoeur B, . HLA-mismatched cord blood transplantation in a patient with advanced leukemia. Bone Marrow Transplant. 1991;7(Suppl 2):125.
  • Gluckman E, Rocha V, Boyer-Chammard A, Lucatelli F, Arcese W, Pasquini R, . Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med. 1997;337:373–81.
  • Madrigal JA, Cohen SB, Gluckman E, Charron DJ. Does cord blood transplantation result in lower graft-versus-host disease? It takes more than two to tango. Hum Immunol. 1997;56:1–5.
  • Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, Migliaccio AR, . Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med. 1998;339:1565–77.
  • Wagner JE, Rosenthal J, Sweetman R, Shu XO, Davies SM, Ramsay NK, . Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease. Blood. 1996;88:795–802.
  • Dalle JH, Duval M, Moghrabi A, Wagner E, Vachon MF, Barrette S, . Results of an unrelated transplant search strategy using partially HLA-mismatched cord blood as an immediate alternative to HLA-matched bone marrow. Bone Marrow Transplant. 2004;33:605–11.
  • Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang MJ, Champlin RE, . Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351:2265–75.
  • Howrey RP, Martin PL, Driscoll T, Szabolcs P, Kelly T, Shpall EJ, . Graft-versus-leukemia-induced complete remission following unrelated umbilical cord blood transplantation for acute leukemia. Bone Marrow Transplant. 2000;26:1251–4.
  • Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A, . Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351:2276–85.
  • Laughlin MJ, Barker J, Bambach B, Kac ON, Rizzieri DA, Wagner JE, . Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med. 2001;344: 1815–22.
  • Hassan J, Reen DJ. Cord blood CD4+ CD45RA+ T cells achieve a lower magnitude of activation when compared with their adult counterparts. Immunology. 1997;90:397–401.
  • Chalmers IM, Janossy G, Contreras M, Navarrete C. Intracellular cytokine profile of cord and adult blood lymphocytes. Blood. 1998;92:11–8.
  • Trivedi HN, HayGlass KT, Gangur V, Allardice JG, Embree JE, Plummer FA, . Analysis of neonatal T cell and antigen presenting cell functions. Hum Immunol. 1997;57:69–79.
  • Tang ML, Kemp AS, Thorburn J, Hill DJ. Reduced interferon-gamma secretion in neonates and subsequent atopy. Lancet. 1994;344:983–5.
  • Brown JA, Boussiotis VA. Umbilical cord blood transplantation: basic biology and clinical challenges to immune reconstitution. Clin Immunol. 2008;127:286–97.
  • Szabolcs P, Cairo MS. Unrelated umbilical cord blood transplantation and immune reconstitution. Semin Hematol. 2010; 47:22–36.
  • Tse W, Laughlin M. Cord blood transplantation in adult patients. Cytotherapy. 2005;7:228–42.
  • Okas M, Gertow J, Uzunel M, Karlsson H, Westgren M, Karre K, . Clinical expansion of cord blood-derived T cells for use as donor lymphocyte infusion after cord blood transplantation. J Immunother. 2010; 33:96–105.
  • Davis CC, Marti LC, Sempowski GD, Jeyaraj DA, Szabolcs P. Interleukin-7 permits Th1/Tc1 maturation and promotes ex vivo expansion of cord blood T cells: a critical step toward adoptive immunotherapy after cord blood transplantation. Cancer Res. 2010;70:5249–58.
  • Kroger N, Zabelina T, Kruger W, Renges H, Stute N, Schrum J, . Patient cytomegalovirus seropositivity with or without reactivation is the most important prognostic factor for survival and treatment-related mortality in stem cell transplantation from unrelated donors using pretransplant in vivo T-cell depletion with anti-thymocyte globulin. Br J. Haematol. 2001;113:1060–71.
  • Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS, . Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12:1160–6.
  • Cruz CR, Hanley PJ, Liu H, Torrano V, Lin YF, Arce JA, . Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience. Cytotherapy. 2010; 12:743–9.
  • Kadereit S, Mohammad SF, Miller RE, Woods KD, Listrom CD, McKinnon K, . Reduced NFAT1 protein expression in human umbilical cord blood T lymphocytes. Blood. 1999;94:3101–7.
  • Barrios C, Brandt C, Berney M, Lambert PH, Siegrist CA, . Partial correction of the TH2/TH1 imbalance in neonatal murine responses to vaccine antigens through selective adjuvant effects. Eur J Immunol. 1996;26:2666–70.
  • Delespesse G, Yang LP, Ohshima Y, Demeure C, Shu U, Byun DG, . Maturation of human neonatal CD4+ and CD8+ T lymphocytes into Th1/Th2 effectors. Vaccine. 1998;16:1415–9.
  • Sun Q, Burton RL, Pollok KE, Emmanuel DJ, Lucas KG, . CD4(+) Epstein–Barr virus-specific cytotoxic T-lymphocytes from human umbilical cord blood. Cell Immunol. 1999;195:81–8.
  • Park KD, Marti L, Kurtzberg J, Szabolcs P. In vitro priming and expansion of cytomegalovirus-specific Th1 and Tc1 T cells from naive cord blood lymphocytes. Blood. 2006;108: 1770–3.
  • Hanley PJ, Cruz CR, Savoldo B, Leen AM, Stanojevic M, Khalil M, . Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood. 2009;114:1958–67.
  • Merindol N, Grenier AJ, Caty M, Charrier E, Duval A, Duval M, . Umbilical cord blood T cells respond against the melan-A/MART-1 tumor antigen and exhibit reduced alloreactivity as compared with adult blood-derived T cells. J. Immunol. 2010;185:856–66.
  • Rossig C, Brenner MK. Genetic modification of T lymphocytes for adoptive immunotherapy. Mol Ther. 2004;10:5–18.
  • Sadelain M, Riviere I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003; 3:35–45.
  • Serrano LM, Pfeiffer T, Olivares S, Numbenjapon T, Bennitt J, Kim D, . Differentiation of naive cord-blood T cells into CD19-specific cytolytic effectors for posttransplantation adoptive immunotherapy. Blood. 2006;107:2643–52.
  • Huang X, Guo H, Kang J, Choi S, Zhou TC, Tammana S, . Sleeping beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol Ther. 2008;16: 580–9.
  • Stauss HJ, Cesco-Gaspere M, Thomas S, Hart DP, Xue SA, Holler A, . Monoclonal T-cell receptors: new reagents for cancer therapy. Mol Ther. 2007;15:1744–50.
  • Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, . Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007;15:825–33.
  • Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, . A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006;12:6106–15.
  • Finney HM, Akbar AN, Lawson AD. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 2004;172:104–13.
  • Krause A, Guo HF, Latouche JB, Tan C, Cheung NK, Sadelain M, . Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med. 1998;188:619–26.
  • Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol. 2002;20:70–5.
  • Wang J, Jensen M, Lin Y, Sui X, Chen E, Lindgren CG, . Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum Gene Ther. 2007;18:712–25.
  • Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, . Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA. 2009;106:3360–5.
  • Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, . Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17:1453–64.
  • Marin V, Kakuda H, Dander E, Imai C, Campana D, Biondi A, . Enhancement of the anti-leukemic activity of cytokine induced killer cells with an anti-CD19 chimeric receptor delivering a 4-1BB-zeta activating signal. Exp Hematol. 2007;35:1388–97.
  • Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, Le Perle K, . Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res. 2007;13:5426–35.
  • Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, . CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 2006;66:10995–1004.
  • Micklethwaite KP, Savoldo B, Hanley PJ, Leen AM, Demmler-Harrison GJ, Cooper LI, . Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood. 2010;115:2695–703.
  • Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, . Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14:1264–70.
  • Dalle JH, Menezes J, Wagner E, Blagdon M, Champagne J, Champagne MA, . Characterization of cord blood natural killer cells: implications for transplantation and neonatal infections. Pediatr Res. 2005;57:649–55.
  • Fan YY, Yang BY, Wu CY. Phenotypic and functional heterogeneity of natural killer cells from umbilical cord blood mononuclear cells. Immunol Invest. 2008;37:79–96.
  • Gaddy J, Broxmeyer HE. Cord blood CD16+56− cells with low lytic activity are possible precursors of mature natural killer cells. Cell Immunol. 1997;180:132–42.
  • Verneris MR, Miller JS. The phenotypic and functional characteristics of umbilical cord blood and peripheral blood natural killer cells. Br J Haematol. 2009;147:185–91.
  • Wang Y, Xu H, Zheng X, Wei H, Sun R, Ttan Z, . High expression of NKG2A/CD94 and low expression of granzyme B are associated with reduced cord blood NK cell activity. Cell Mol Immunol. 2007;4:377–82.
  • Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, . Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–100.
  • Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T, . Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110:433–40.
  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, . Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105: 3051–7.
  • Klingemann HG, Martinson J. Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy. 2004;6: 15–22.
  • Iyengar R, Handgretinger R, Babarin-Dorner A, Leimig T, Otto M, Geiger TL, . Purification of human natural killer cells using a clinical-scale immunomagnetic method. Cytotherapy. 2003;5:479–84.
  • Spanholtz J, Tordoir M, Eissens D, Preijers F, van der Meer A, Joosten I, . High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS One. 2010;5:e9221.
  • Dongxia X, Ramsay AG, Gribben JG, Decker WK, Burks JK, Munsell M, . Cord blood natural killer cells exhibit impaired lytic immunological synapse formation that is reversed with IL-2 ex vivo expansion. J Immunother. 2010;in press.
  • Sakaguchi S, Sakaguchi N, Asano M, Ltoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.
  • Anderson BE, McNiff JM, Matte C, Athanasiadis I, Shlomchik WD, Shlomchik MJ, . Recipient CD4+ T cells that survive irradiation regulate chronic graft-versus-host disease. Blood. 2004;104:1565–73.
  • Zhao D, Zhang C, Yi T, Lin CL, Todorov I, Kandeel F, . In vivo-activated CD103+CD4+ regulatory T cells ameliorate ongoing chronic graft-versus-host disease. Blood. 2008;112:2129–38.
  • Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002; 99:3493–9.
  • Godfrey WR, Spoden DJ, Ge YG, Baker SR, Liu B, Levine BL, . Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2005; 105:750–8.
  • Tolar J, Hippen KL, Blazar BR. Immune regulatory cells in umbilical cord blood: T regulatory cells and mesenchymal stromal cells. Br J Haematol. 2009;147:200–6.
  • Brunstein C, Hippen KL, McKenna DH, Cao Q, Curtsinger J, Sumstad D, . Adoptive transfer of umbilical cord blood (UCB)-derived regulatory T cells (Tregs) to recipients of nonmyeloablative unrelated double UCB transplantation. Am Soc Hematol. 2009; in press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.