74
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Tumor vaccines and beyond

&
Pages 8-18 | Received 01 Mar 2010, Accepted 06 Jul 2010, Published online: 10 Nov 2010

References

  • Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T, . Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA. 2008;105:4283–8.
  • Fialkow P, Singer J, Adamson J, Vaidya K, Dow L, Ochs J, . Acute nonlymphocytic leukemia: heterogeneity of stem cell origin. Blood. 1981;57:1068–73.
  • Fialkow PJ, Singer JW, Raskind WH, Adamson JW, Jacobson RJ, Bernstein ID, . Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med. 1987;317:468–73.
  • Fearon ER, Hamilton SR, Vogelstein B. Clonal analysis of human colorectal tumors. Science. 1987;238:193–7.
  • Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, . Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–32.
  • Tsao JL, Yatabe Y, Salovaara R, Jarvinen HJ, Mecklin JP, Aaltonen LA, . Genetic reconstruction of individual colorectal tumor histories. Proc Natl Acad Sci USA. 2000;97: 1236–41.
  • Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol. 1999;9:M57–60.
  • Battegay M, Elzi L. Morbidity and mortality in HIV-infected individuals: a shift towards comorbidities. Swiss Med Wkly. 2009;139:564–70.
  • Ramirez-Olivencia G, Valencia-Ortega ME, Martin-Carbonero L, Moreno-Celda V, Gonzalez-Lahoz J. [Malignancies in HIV infected patients: study of 139 cases]. Med Clin (Barc). 2009;133:729–35.
  • Marin-Muller C, Li M, Chen C, Yao Q. Current understanding and potential immunotherapy for HIV-associated squamous cell carcinoma of the anus (SCCA). World J Surg. 2009;33:653–60.
  • Yarchoan R, Tosato G, Little RF. Therapy insight: AIDS-related malignancies: the influence of antiviral therapy on pathogenesis and management. Nat Clin Pract Oncol. 2005;2:406–15, 23.
  • Coulie PG, Ikeda H, Baurain JF, Chiari R. Antitumor immunity at work in a melanoma patient. Adv Cancer Res. 1999;76:213–42.
  • Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT, . Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med. 2009;361:478–88.
  • Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, . Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319:1676–80.
  • Greiner J, Dohner H, Schmitt M. Cancer vaccines for patients with acute myeloid leukemia: definition of leukemia-associated antigens and current clinical protocols targeting these antigens. Haematologica. 2006;91:1653–61.
  • Dao T, Scheinberg DA. Peptide vaccines for myeloid leukaemias. Best Pract Res Clin Haematol. 2008;21:391–404.
  • Oka Y, Tsuboi A, Kawakami M, Elisseeva OA, Nakajima H, Udaka K, . Development of WT1 peptide cancer vaccine against hematopoietic malignancies and solid cancers. Curr Med Chem. 2006;13:2345–52.
  • Rusakiewicz S, Molldrem JJ. Immunotherapeutic peptide vaccination with leukemia-associated antigens. Curr Opin Immunol. 2006;18:599–604.
  • Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu Rev Immunol. 2006;24:175–208.
  • Van den Eynde B, Van der Bruggen P. Peptide database of T cell defined tumor antigens. Academy of Cancer Immunology http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm. 2010.
  • Akatsuka Y, Morishima Y, Kuzushima K, Kodera Y, Takahashi T. Minor histocompatibility antigens as targets for immunotherapy using allogeneic immune reactions. Cancer Sci. 2007;98:1139–46.
  • Lucas S, Coulie PG. About human tumor antigens to be used in immunotherapy. Semin Immunol. 2008;20:301–7.
  • Molldrem J, Dermime S, Parker K, Jiang YZ, Mavroudis D, Hensel N, . Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood. 1996;88:2450–7.
  • Molldrem JJ, Clave E, Jiang YZ, Mavroudis D, Raptis A, Hensel N, . Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood. 1997; 90:2529–34.
  • Fujiwara H, El Ouriaghli F, Grube M, Price DA, Rezvani K, Gostick E, . Identification and in vitro expansion of CD4+ and CD8+ T cells specific for human neutrophil elastase. Blood. 2004;103:3076–83.
  • Fujiwara H, Melenhorst JJ, El Ouriaghli F, Kajigaya S, Grube M, Sconocchia G, . In vitro induction of myeloid leukemia-specific CD4 and CD8 T cells by CD40 ligand-activated B cells gene modified to express primary granule proteins. Clin Cancer Res. 2005;11:4495–503.
  • Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE, . Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med. 2000;6:1018–23.
  • Melenhorst JJ, Scheinberg P, Chattopadhyay PK, Gostick E, Ladell K, Roederer M, . High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood. 2009;113:2238–44.
  • Melenhorst JJ, Scheinberg P, Chattopadhyay PK, Lissina A, Gostick E, Cole DK, . Detection of low avidity CD8(+) T cell populations with coreceptor-enhanced peptide-major histocompatibility complex class I tetramers. J Immunol Methods. 2008;338:31–9.
  • Molldrem JJ, Lee PP, Kant S, Wieder E, Jiang W, Lu S, . Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest. 2003;111:639–47.
  • Inoue K, Ogawa H, Sonoda Y, Kimura T, Sakabe H, Oka Y, . Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood. 1997;89:1405–12.
  • Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, . WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84:3071–9.
  • Keilholz U, Menssen HD, Gaiger A, Menke A, Oji Y, Oka Y, . Wilms’ tumour gene 1 (WT1) in human neoplasia. Leukemia. 2005;19:1318–23.
  • Yamagami T, Sugiyama H, Inoue K, Ogawa H, Tatekawa T, Hirata M, . Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis. Blood. 1996;87:2878–84.
  • Hubinger G, Schmid M, Linortner S, Manegold A, Bergmann L, Maurer U. Ribozyme-mediated cleavage of wt1 transcripts suppresses growth of leukemia cells. Exp Hematol. 2001;29:1226–35.
  • Tatsumi N, Oji Y, Tsuji N, Tsuda A, Higashio M, Aoyagi S, . Wilms’ tumor gene WT1-shRNA as a potent apoptosis-inducing agent for solid tumors. Int J Oncol. 2008;32: 701–11.
  • King-Underwood L, Renshaw J, Pritchard-Jones K. Mutations in the Wilms’ tumor gene WT1 in leukemias. Blood. 1996;87:2171–9.
  • Tosello V, Mansour MR, Barnes K, Paganin M, Sulis ML, Jenkinson S, . WT1 mutations in T-ALL. Blood. 2009; 114:1038–45.
  • Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, Balgobind BV, Arentsen-Peters ST, Alders M, . Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood. 2009;113:5951–60.
  • King-Underwood L, Pritchard-Jones K. Wilms’ tumor (WT1) gene mutations occur mainly in acute myeloid leukemia and may confer drug resistance. Blood. 1998;91:2961–8.
  • Renneville A, Boissel N, Zurawski V, Llopis L, Biggio V, Nibourel O, . Wilms tumor 1 gene mutations are associated with a higher risk of recurrence in young adults with acute myeloid leukemia: a study from the Acute Leukemia French Association. Cancer. 2009;115:3719–27.
  • Willasch AM, Gruhn B, Coliva T, Kalinova M, Schneider G, Kreyenberg H, . Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. Leukemia. 2009;23:1472–9.
  • Barrett AJ, Melenhorst JJ. Minor histocompatibility antigen discovery: turning up the HEATR. Blood. 2010;115: 4630–1.
  • den Haan JM, Meadows LM, Wang W, Pool J, Blokland E, Bishop TL, . The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science. 1998;279:1054–7.
  • Pierce RA, Field ED, Mutis T, Golovina TN, Von Kap-Herr C, Wilke M, . The HA-2 minor histocompatibility antigen is derived from a diallelic gene encoding a novel human class I myosin protein. J Immunol. 2001;167:3223–30.
  • Dolstra H, Fredrix H, Maas F, Coulie PG, Brasseur F, Mensink E, . A human minor histocompatibility antigen specific for B cell acute lymphoblastic leukemia. J Exp Med. 1999;189:301–8.
  • de Rijke B, van Horssen-Zoetbrood A, Beekman JM, Otterud B, Maas F, Woestenenk R, . A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J Clin Invest. 2005;115:3506–16.
  • Spaapen RM, Lokhorst HM, van den Oudenalder K, Otterud BE, Dolstra H, Leppert MF, . Toward targeting B cell cancers with CD4+ CTLs: identification of a CD19-encoded minor histocompatibility antigen using a novel genome-wide analysis. J Exp Med. 2008;205:2863–72.
  • Bleakley M, Otterud BE, Richardt JL, Mollerup AD, Hudecek M, Nishida T, . Leukemia-associated minor histocompatibility antigen discovery using T-cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood. 2010;115:4923–33.
  • Spierings E, Gras S, Reiser JB, Mommaas B, Almekinders M, Kester MG, . Steric hindrance and fast dissociation explain the lack of immunogenicity of the minor histocompatibility HA-1Arg Null allele. J Immunol. 2009;182:4809–16.
  • Takahashi Y, Harashima N, Kajigaya S, Yokoyama H, Cherkasova E, McCoy JP, . Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J Clin Invest. 2008;118:1099–109.
  • Bannert N, Kurth R. The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet. 2006;7:149–73.
  • Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H, . Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA. 2004;101:13885–90.
  • Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J, . Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008; 111:236–42.
  • Keilholz U, Letsch A, Busse A, Asemissen AM, Bauer S, Blau IW, . A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113:6541–8.
  • Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature. 2003;421:852–6.
  • Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD, . CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature. 2005;434:88–93.
  • Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science. 2003; 300:337–9.
  • Ryu SJ, Jung KM, Yoo HS, Kim TW, Kim S, Chang J, . Cognate CD4 help is essential for the reactivation and expansion of CD8 memory T cells directed against the hematopoietic cell-specific dominant minor histocompatibility antigen, H60. Blood. 2009;113:4273–80.
  • Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992;257:238–41.
  • Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, . Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333:1038–44.
  • Jiang YZ, Mavroudis D, Dermime S, Hensel N, Couriel D, Molldrem J, . Alloreactive CD4+ T lymphocytes can exert cytotoxicity to chronic myeloid leukaemia cells processing and presenting exogenous antigen. Br J Haematol. 1996;93:606–12.
  • Faber LM, van Luxemburg-Heijs SA, Veenhof WF, Willemze R, Falkenburg JH. Generation of CD4+ cytotoxic T-lymphocyte clones from a patient with severe graft-versus-host disease after allogeneic bone marrow transplantation: implications for graft-versus-leukemia reactivity. Blood. 1995;86:2821–8.
  • Dodi IA, Van Rhee F, Forde HC, Roura-Mir C, Jaraquemada D, Goldman JM, . CD4(+) bias in T cells cloned from a CML patient with active graft versus leukemia effect. Cytotherapy. 2002;4:353–63.
  • Yasukawa M, Ohminami H, Kaneko S, Yakushijin Y, Nishimura Y, Inokuchi K, . CD4(+) cytotoxic T-cell clones specific for bcr-abl b3a2 fusion peptide augment colony formation by chronic myelogenous leukemia cells in a b3a2-specific and HLA-DR-restricted manner. Blood. 1998;92:3355–61.
  • Griffioen M, van der Meijden ED, Slager EH, Honders MW, Rutten CE, van Luxemburg-Heijs SA, . Identification of phosphatidylinositol 4-kinase type II beta as HLA class II-restricted target in graft versus leukemia reactivity. Proc Natl Acad Sci USA. 2008;105:3837–42.
  • Nishimura M, Uchida S, Mitsunaga S, Yahagi Y, Nakajima K, Tadokoro K, . Characterization of T-cell clones derived from peripheral blood lymphocytes of a patient with transfusion-associated graft-versus-host disease: Fas-mediated killing by CD4+ and CD8+ cytotoxic T-cell clones and tumor necrosis factor beta production by CD4+ T-cell clones. Blood. 1997;89:1440–5.
  • Appay V. The physiological role of cytotoxic CD4(+) T-cells: the holy grail? Clin Exp Immunol. 2004;138:10–3.
  • Casazza JP, Betts MR, Price DA, Precopio ML, Ruff LE, Brenchley JM, . Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J Exp Med. 2006;203:2865–77.
  • Guo Y, Niiya H, Azuma T, Uchida N, Yakushijin Y, Sakai I, . Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood. 2005;106:1415–8.
  • Zorn E, Wang KS, Hochberg EP, Canning C, Alyea EP, Soiffer RJ, . Infusion of CD4+ donor lymphocytes induces the expansion of CD8+ donor T cells with cytolytic activity directed against recipient hematopoietic cells. Clin Cancer Res. 2002;8:2052–60.
  • Giralt S, Hester J, Huh Y, Hirsch-Ginsberg C, Rondon G, Seong D, . CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood. 1995;86:4337–43.
  • Alyea EP, Soiffer RJ, Canning C, Neuberg D, Schlossman R, Pickett C, . Toxicity and efficacy of defined doses of CD4(+) donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood. 1998;91: 3671–80.
  • Mocellin S, Mandruzzato S, Bronte V, Lise M, Nitti D. I. Vaccines for solid tumours. Lancet Oncol. 2004;5:681–9.
  • Mocellin S, Semenzato G, Mandruzzato S, Riccardo Rossi C. II. Vaccines for haematological malignant disorders. Lancet Oncol. 2004;5:727–37.
  • Lonchay C, van der Bruggen P, Connerotte T, Hanagiri T, Coulie P, Colau D, . Correlation between tumor regression and T cell responses in melanoma patients vaccinated with a MAGE antigen. Proc Natl Acad Sci USA. 2004; 101(Suppl 2):14631–8.
  • Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood. 2003;101:3142–9.
  • Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004;5:738–43.
  • Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, . Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–67.
  • Dick JE. Stem cell concepts renew cancer research. Blood. 2008;112:4793–807.
  • Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, . Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76:2462–5.
  • Slavin S, Naparstek E, Nagler A, Ackerstein A, Samuel S, Kapelushnik J, . Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood. 1996;87:2195–204.
  • von dem Borne PA, van Luxemburg-Heijs SA, Heemskerk MH, Jedema I, Mulder A, Willemze R, . Molecular persistence of chronic myeloid leukemia caused by donor T cells specific for lineage-restricted maturation antigens not recognizing immature progenitor-cells. Leukemia. 2006;20:1040–6.
  • Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, . IFNalpha activates dormant haematopoietic stem cells in vivo. Nature. 2009;458:904–8.
  • Vence L, Palucka AK, Fay JW, Ito T, Liu YJ, Banchereau J, . Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci USA. 2007;104:20884–9.
  • Nicholaou T, Ebert LM, Davis ID, McArthur GA, Jackson H, Dimopoulos N, . Regulatory T-cell-mediated attenuation of T-cell responses to the NY-ESO-1 ISCOMATRIX vaccine in patients with advanced malignant melanoma. Clin Cancer Res. 2009;15:2166–73.
  • Francois V, Ottaviani S, Renkvist N, Stockis J, Schuler G, Thielemans K, . The CD4(+) T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res. 2009;69:4335–45.
  • Jandus C, Bioley G, Dojcinovic D, Derre L, Baitsch L, Wieckowski S, . Tumor antigen-specific FOXP3+ CD4 T cells identified in human metastatic melanoma: peptide vaccination results in selective expansion of Th1-like counterparts. Cancer Res. 2009;69:8085–93.
  • Lehe C, Ghebeh H, Al-Sulaiman A, Al Qudaihi G, Al-Hussein K, Almohareb F, . The Wilms’ tumor antigen is a novel target for human CD4+ regulatory T cells: implications for immunotherapy. Cancer Res. 2008;68:6350–9.
  • Bonertz A, Weitz J, Pietsch DH, Rahbari NN, Schlude C, Ge Y, . Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J Clin Invest. 2009;119:3311–21.
  • Aspord C, Pedroza-Gonzalez A, Gallegos M, Tindle S, Burton EC, Su D, . Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med. 2007;204:1037–47.
  • Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, . Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med. 1999;5:677–85.
  • Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D, Lejeune F, . Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res. 2004;64:2865–73.
  • Mortarini R, Piris A, Maurichi A, Molla A, Bersani I, Bono A, . Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res. 2003;63:2535–45.
  • Yasui H, Takai K, Yoshida R, Hayaishi O. Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase: its possible occurrence in cancer patients. Proc Natl Acad Sci USA. 1986;83:6622–6.
  • Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, . Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 2002;297:1867–70.
  • Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, . CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol. 2002;3:1097–101.
  • Guillonneau C, Hill M, Hubert FX, Chiffoleau E, Herve C, Li XL, . CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest. 2007;117:1096–106.
  • Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH. Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J Immunol. 2002;168:3771–6.
  • Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189:1363–72.
  • Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196:459–68.
  • Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, . Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest. 2004;114:280–90.
  • Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, . Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191–3.
  • Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, . Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9:1269–74.
  • Curti A, Aluigi M, Pandolfi S, Ferri E, Isidori A, Salvestrini V, . Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia. 2007;21:353–5.
  • Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–31.
  • Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, . Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte–macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007;25:2546–53.
  • Bronte V. Myeloid-derived suppressor cells in inflammation: uncovering cell subsets with enhanced immunosuppressive functions. Eur J Immunol. 2009;39:2670–2.
  • Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, . Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2008;14:8270–8.
  • Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, . A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008; 135:234–43.
  • Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, . Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50:799–807.
  • Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, . Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005;65:3044–8.
  • Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, . Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 2009;69:1553–60.
  • Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007;13:721–6s.
  • Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, . Immunosuppressive CD14+HLA-DRlow/– monocytes in prostate cancer. Prostate. 2010;70:443–55.
  • Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, . IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol. 2009;182:6562–8.
  • Liu CY, Wang YM, Wang CL, Feng PH, Ko HW, Liu YH, . Population alterations of L: –arginase– and inducible nitric oxide synthase-expressed CD11b(+)/CD14 (–)/CD15 (+)/CD33 (+) myeloid-derived suppressor cells and CD8 (+) T lymphocytes in patients with advanced-stage non-small cell lung cancer. J Cancer Res Clin Oncol. 2009 Jul 2. [Epub ahead of print].
  • Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive CD14+HLA-DR–/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 2010;70:4335–45.
  • Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009;229:12–26.
  • Riley JL. PD-1 signaling in primary T cells. Immunol Rev. 2009;229:114–25.
  • Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, . Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114:1537–44.
  • Zhang Y, Huang S, Gong D, Qin Y, Shen Q. Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8(+) T lymphocytes in human non-small cell lung cancer. Cell Mol Immunol. 2010;7:389–95.
  • Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, . Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA. 2010;107:7875–80.
  • Hino R, Kabashima K, Kato Y, Yagi H, Nakamura M, Honjo T, . Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer. 2010;116:1757–66.
  • Lee H, Kim JH, Yang SY, Kong J, Oh M, Jeong DH, . Peripheral blood gene expression of B7 and CD28 family members associated with tumor progression and microscopic lymphovascular invasion in colon cancer patients. J Cancer Res Clin Oncol. 2010;136:1445–52.
  • Kao J, Ko EC, Eisenstein S, Sikora AG, Fu S, Chen SH. Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol/Hematol (2010), doi:10.1016/j. critrevonc.2010.02.004.
  • Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, . Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.
  • Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7:139–47.
  • Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer. 2009;9:445–52.
  • Mangsbo SM, Sandin LC, Anger K, Korman AJ, Loskog A, Totterman TH. Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J Immunother. 2010;33:225–35.
  • Kamei M, Nannya Y, Torikai H, Kawase T, Taura K, Inamoto Y, . HapMap scanning of novel human minor histocompatibility antigens. Blood. 2009;113:5041–8.
  • Coulie PG, Somville M, Lehmann F, Hainaut P, Brasseur F, Devos R, . Precursor frequency analysis of human cytolytic T lymphocytes directed against autologous melanoma cells. Int J Cancer. 1992;50:289–97.
  • Carrasco J, Van Pel A, Neyns B, Lethe B, Brasseur F, Renkvist N, . Vaccination of a melanoma patient with mature dendritic cells pulsed with MAGE-3 peptides triggers the activity of nonvaccine anti-tumor cells. J Immunol. 2008;180:3585–93.
  • Coulie PG, Karanikas V, Colau D, Lurquin C, Landry C, Marchand M, . A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci USA. 2001;98:10290–5.
  • Karanikas V, Lurquin C, Colau D, van Baren N, De Smet C, Lethe B, . Monoclonal anti-MAGE-3 CTL responses in melanoma patients displaying tumor regression after vaccination with a recombinant canarypox virus. J Immunol. 2003;171:4898–904.
  • van Baren N, Bonnet MC, Dreno B, Khammari A, Dorval T, Piperno-Neumann S, . Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. J Clin Oncol. 2005;23:9008–21.
  • Mazzocchi A, Belli F, Mascheroni L, Vegetti C, Parmiani G, Anichini A. Frequency of cytotoxic T lymphocyte precursors (CTLp) interacting with autologous tumor via the T-cell receptor: limiting dilution analysis of specific CTLp in peripheral blood and tumor-invaded lymph nodes of melanoma patients. Int J Cancer. 1994;58:330–9.
  • Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D, . Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res. 2003;9:998–1008.
  • Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, . Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol. 2002;20:2624–32.
  • Lally KM, Mocellin S, Ohnmacht GA, Nielsen MB, Bettinotti M, Panelli MC, . Unmasking cryptic epitopes after loss of immunodominant tumor antigen expression through epitope spreading. Int J Cancer. 2001;93:841–7.
  • Chattopadhyay PK, Melenhorst JJ, Ladell K, Gostick E, Scheinberg P, Barrett AJ, . Techniques to improve the direct ex vivo detection of low frequency antigen-specific CD8+ T cells with peptide-major histocompatibility complex class I tetramers. Cytometry A. 2008;73:1001–9.
  • Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, . Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274:94–6.
  • Novak EJ, Liu AW, Nepom GT, Kwok WW. MHC class II tetramers identify peptide-specific human CD4(+) T cells proliferating in response to influenza A antigen. J Clin Invest. 1999;104:R63–7.
  • Douek DC, Betts MR, Brenchley JM, Hill BJ, Ambrozak DR, Ngai KL, . A novel approach to the analysis of specificity, clonality, and frequency of HIV-specific T cell responses reveals a potential mechanism for control of viral escape. J Immunol. 2002;168:3099–104.
  • Price DA, West SM, Betts MR, Ruff LE, Brenchley JM, Ambrozak DR, . T cell receptor recognition motifs govern immune escape patterns in acute SIV infection. Immunity. 2004;21:793–803.
  • Scheinberg P, Melenhorst JJ, Hill BJ, Keyvanfar K, Barrett AJ, Price DA, . The clonal composition of human CD4+CD25+Foxp3+ cells determined by a comprehensive DNA-based multiplex PCR for TCRB gene rearrangements. J Immunol Methods. 2007;321:107–20.
  • Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, . Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med. 2007;204:1405–16.
  • Bioley G, Dousset C, Yeh A, Dupont B, Bhardwaj N, Mears G, . Vaccination with recombinant NY-ESO-1 protein elicits immunodominant HLA-DR52b-restricted CD4+ T cell responses with a conserved T cell receptor repertoire. Clin Cancer Res. 2009;15:4467–74.
  • Wieckowski S, Baumgaertner P, Corthesy P, Voelter V, Romero P, Speiser DE, . Fine structural variations of alphabetaTCRs selected by vaccination with natural versus altered self-antigen in melanoma patients. J Immunol. 2009;183:5397–406.
  • Derre L, Bruyninx M, Baumgaertner P, Ferber M, Schmid D, Leimgruber A, . Distinct sets of alphabeta TCRs confer similar recognition of tumor antigen NY-ESO-1157-165 by interacting with its central Met/Trp residues. Proc Natl Acad Sci USA. 2008;105:15010–5.
  • Price DA, Asher TE, Wilson NA, Nason MC, Brenchley JM, Metzler IS, . Public clonotype usage identifies protective Gag-specific CD8+ T cell responses in SIV infection. J Exp Med. 2009;206:923–36.
  • Frentsch M, Arbach O, Kirchhoff D, Moewes B, Worm M, Rothe M, . Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat Med. 2005;11:1118–24.
  • Chattopadhyay PK, Yu J, Roederer M. A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat Med. 2005;11:1113–7.
  • Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, . Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods. 2003;281: 65–78.
  • Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ, Bleakley M, . Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood. 2007;110: 201–10.
  • Heemskerk MH, de Paus RA, Lurvink EG, Koning F, Mulder A, Willemze R, . Dual HLA class I and class II restricted recognition of alloreactive T lymphocytes mediated by a single T cell receptor complex. Proc Natl Acad Sci USA. 2001;98:6806–11.
  • Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 2006;66:8878–86.
  • Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 2007;67:3898–903.
  • Okamoto S, Mineno J, Ikeda H, Fujiwara H, Yasukawa M, Shiku H, . Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res. 2009;69: 9003–11.
  • Jones S, Peng PD, Yang S, Hsu C, Cohen CJ, Zhao Y, . Lentiviral vector design for optimal T cell receptor gene expression in the transduction of peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Hum Gene Ther. 2009;20:630–40.
  • Kuball J, Hauptrock B, Malina V, Antunes E, Voss RH, Wolfl M, . Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain. J Exp Med. 2009;206:463–75.
  • Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, . Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126–9.
  • Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, . Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114: 535–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.