230
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Therapeutic plasticity of stem cells and allograft tolerance

&
Pages 647-660 | Received 14 Feb 2011, Accepted 23 Mar 2011, Published online: 10 May 2011

References

  • Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nature reviews. Neuroscience. 2006;7:395–406.
  • Chen L, Wang T, Zhou P, Ma L, Yin D, Shen J, . TLR engagement prevents transplantation tolerance. Am J Transplant. 2006;6:2282–91.
  • Palmer SM, Burch LH, Davis RD, Herczyk WF, Howell DN, Reinsmoen NL, . The role of innate immunity in acute allograft rejection after lung transplantation. Am J Respir Crit Care Med. 2003;168:628–32.
  • Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol. 2010;87:989–99.
  • Goldstein DR, Tesar BM, Akira S, Lakkis FG. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J Clin Invest. 2003;111:1571–8.
  • Tesar BM, Zhang J, Li Q, Goldstein DR. TH1 immune responses to fully MHC mismatched allografts are diminished in the absence of MyD88, a toll-like receptor signal adaptor protein. Am J Transplant. 2004;4:1429–39.
  • McKay D, Shigeoka A, Rubinstein M, Surh C, Sprent J. Simultaneous deletion of MyD88 and Trif delays major histocompatibility and minor antigen mismatch allograft rejection. Eur J Immunol. 2006;36:1994–2002.
  • Moser B, Szabolcs MJ, Ankersmit HJ, Lu Y, Qu W, Weinberg A, . Blockade of RAGE suppresses alloimmune reactions in vitro and delays allograft rejection in murine heart transplantation. Am J Transplant. 2007;7:293–302.
  • Walker WE, Nasr IW, Camirand G, Tesar BM, Booth CJ, Goldstein DR. Absence of innate MyD88 signaling promotes inducible allograft acceptance. J Immunol. 2006;177:5307–16.
  • Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003;299:1033–6.
  • Thornley TB, Brehm MA, Markees TG, Shultz LD, Mordes JP, Welsh RM, . TLR agonists abrogate costimulation blockade-induced prolongation of skin allografts. J Immunol. 2006;176:1561–70.
  • Ducloux D, Deschamps M, Yannaraki M, Ferrand C, Bamoulid J, Saas P, . Relevance of Toll-like receptor-4 polymorphisms in renal transplantation. Kidney Int. 2005;67: 2454–61.
  • Palmer SM, Klimecki W, Yu L, Reinsmoen NL, Snyder LD, Ganous TM, . Genetic regulation of rejection and survival following human lung transplantation by the innate immune receptor CD14. Am J Transplant. 2007;7:693–9.
  • Larsen CP, Morris PJ, Austyn JM. Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med. 1990;171:307–14.
  • Game DS, Lechler RI. Pathways of allorecognition: implications for transplantation tolerance. Transpl Immunol. 2002;10: 101–8.
  • Lechler RI, Batchelor JR. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med. 1982;155:31–41.
  • Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004;351:2715–29.
  • Sharpe AH, Abbas AK. T-cell costimulation: biology, therapeutic potential, and challenges. N Engl J Med. 2006;355: 973–5.
  • Strom TB, Roy-Chaudhury P, Manfro R, Zheng XX, Nickerson PW, Wood K, . The Th1/Th2 paradigm and the allograft response. Curr Opin Immunol. 1996;8:688–93.
  • Li XC, Zand MS, Li Y, Zheng XX, Strom TB. On histocompatibility barriers, Th1 to Th2 immune deviation, and the nature of the allograft responses. J Immunol. 1998;161: 2241–7.
  • Le Moine A, Goldman M, Abramowicz D. Multiple pathways to allograft rejection. Transplantation. 2002;73:1373–81.
  • Mitchell P, Afzali B, Lombardi G, Lechler RI. The T helper 17-regulatory T cell axis in transplant rejection and tolerance. Curr Opin Organ Transplant. 2009;14:326–31.
  • Sanchez-Fueyo A, Strom TB. Immunologic basis of graft rejection and tolerance following transplantation of liver or other solid organs. Gastroenterology. 2011;140:51–64.
  • Schlitt HJ, Hundrieser J, Hisanaga M, Uthoff K, Karck M, Wahlers T, . Patterns of donor-type microchimerism after heart transplantation. Lancet. 1994;343:1469–71.
  • Starzl TE, Demetris AJ, Trucco M, Ramos H, Zeevi A, Rudert WA, . Systemic chimerism in human female recipients of male livers. Lancet. 1992;340:876–7.
  • Starzl TE, Demetris AJ, Trucco M, Zeevi A, Ramos H, Terasaki P, . Chimerism and donor-specific nonreactivity 27 to 29 years after kidney allotransplantation. Transplantation. 1993;55:1272–7.
  • Slavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G, . Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood. 1998;91:756–63.
  • Fontes P, Rao AS, Demetris AJ, Zeevi A, Trucco M, Carroll P, . Bone marrow augmentation of donor-cell chimerism in kidney, liver, heart, and pancreas islet transplantation. Lancet. 1994;344:151–5.
  • Rao AS, Fontes P, Zeevi A, Trucco M, Dodson FS, Rybka WB, . Augmentation of chimerism in whole organ recipients by simultaneous infusion of donor bone marrow cells. Transplantation Proc. 1995;27:210–2.
  • Rao AS, Fontes P, Zeevi A, Trucco M, Shapiro R, Demetris AJ, . Combined bone marrow and whole organ transplantation from the same donor. Transplantation Proc. 1994;26: 3377–8.
  • Barber WH, Mankin JA, Laskow DA, Deierhoi MH, Julian BA, Curtis JJ, . Long-term results of a controlled prospective study with transfusion of donor-specific bone marrow in 57 cadaveric renal allograft recipients. Transplantation. 1991;51:70–5.
  • McDaniel DO, Naftilan J, Hulvey K, Shaneyfelt S, Lemons JA, Lagoo-Deenadayalan S, . Peripheral blood chimerism in renal allograft recipients transfused with donor bone marrow. Transplantation. 1994;57:852–6.
  • Monaco AP, Clark AW, Wood ML, Sahyoun AI, Codish SD, Brown RW. Possible active enhancement of a human cadaver renal allograft with antilymphocyte serum (ALS) and donor bone marrow: case report of an initial attempt. Surgery. 1976;79:384–92.
  • Rolles K, Burroughs AK, Davidson BR, Karatapanis S, Prentice HG, Hamon MD. Donor-specific bone marrow infusion after orthotopic liver transplantation. Lancet. 1994;343: 263–5.
  • Kahn DR, Hong R, Greenberg AJ, Gilbert EF, Dacumos GC, Dufek JH. Total lymphatic irradiation and bone marrow in human heart transplantation. Annals Thor Surg. 1984;38: 169–71.
  • Kawai T, Cosimi AB, Spitzer TR, Tolkoff-Rubin N, Suthanthiran M, Saidman SL, . HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008;358:353–61.
  • Sayegh MH, Fine NA, Smith JL, Rennke HG, Milford EL, Tilney NL. Immunologic tolerance to renal allografts after bone marrow transplants from the same donors. Ann Intern Med. 1991;114:954–5.
  • Helg C, Chapuis B, Bolle JF, Morel P, Salomon D, Roux E, . Renal transplantation without immunosuppression in a host with tolerance induced by allogeneic bone marrow transplantation. Transplantation. 1994;58:1420–2.
  • Matthes-Martin S, Peters C, Konigsrainer A, Fritsch G, Lion T, Heitger A, . Successful stem cell transplantation following orthotopic liver transplantation from the same haploidentical family donor in a girl with hemophagocytic lymphohistiocytosis. Blood. 2000;96:3997–9.
  • Urban CH, Deutschmann A, Kerbl R, Lackner H, Schwinger W, Konigsrainer A, . Organ tolerance following cadaveric liver transplantation for chronic graft-versus-host disease after allogeneic bone marrow transplantation. Bone Marrow Transplant. 2002;30:535–7.
  • Kadry Z, Mullhaupt B, Renner EL, Bauerfeind P, Schanz U, Pestalozzi BC, . Living donor liver transplantation and tolerance: a potential strategy in cholangiocarcinoma. Transplantation. 2003;76:1003–6.
  • Buhler LH, Spitzer TR, Sykes M, Sachs DH, Delmonico FL, Tolkoff-Rubin N, . Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation. 2002;74:1405–9.
  • Fandrich F, Lin X, Chai GX, Schulze M, Ganten D, Bader M, . Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat Med. 2002;8:171–8.
  • Burt RK, Verda L, Kim DA, Oyama Y, Luo K, Link C. Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J Exp Med. 2004;199:895–904.
  • Verda L, Kim DA, Ikehara S, Statkute L, Bronesky D, Petrenko Y, . Hematopoietic mixed chimerism derived from allogeneic embryonic stem cells prevents autoimmune diabetes mellitus in NOD mice. Stem Cells. 2008;26: 381–6.
  • Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, . Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101:3722–9.
  • Sundin M, Ringden O, Sundberg B, Nava S, Gotherstrom C, Le Blanc K. No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica. 2007;92:1208–15.
  • Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy. 2003;5:485–9.
  • Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, . Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24:386–98.
  • Nasef A, Mathieu N, Chapel A, Frick J, Francois S, Mazurier C, . Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation. 2007;84: 231–7.
  • Chamberlain G, Fox J, Ashton B, Middleton J. Concise review. Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25:2739–49.
  • Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, . Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30:42–8.
  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, . Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43.
  • Glennie S, Soeiro I, Dyson PJ, Lam EWF, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–7.
  • Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol. 2003;57:11–20.
  • Angoulvant D, Clerc A, Benchalal S, Galambrun C, Farre A, Bertrand Y, . Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens. Biorheology. 2004;41:469–76.
  • Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105: 1815–22.
  • Prevosto C, Zancolli M, Canevali P, Zocchi MR, Poggi A. Generation of CD4(+) or CD8(+) regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica– Hematol J. 2007;92:881–8.
  • Zhang W, Ge W, Li C, You S, Liao L, Han Q, . Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cell Devel. 2004;13:263–71.
  • Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, . Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105: 4120–6.
  • Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, . Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105:2214–9.
  • Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, . Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107:367–72.
  • Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24: 74–85.
  • Opitz CA, Litzenburger UM, Lutz C, Lanz TV, Tritschler I, Koppel A, . Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells. 2009;27:909–19.
  • Liotta F, Angeli R, Cosmi L, Fili L, Manuelli C, Frosali F, . Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing notch signaling. Stem Cells. 2008;26:279–89.
  • Kadri T, Lataillade JJ, Doucet C, Marie A, Ernou I, Bourin P, . Proteomic study of galectin-1 expression in human mesenchymal stem cells. Stem Cell Devel. 2005;14: 204–12.
  • Baum LG, Blackall DP, Arias-Magallano S, Nanigian D, Uh SY, Browne JM, . Amelioration of graft versus host disease by galectin-1. Clin Immunol. 2003;109:295–307.
  • Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes. 2009;58:1797–806.
  • Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, . Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature. 2005;436:266–71.
  • Pluchino S, Gritti A, Blezer E, Amadio S, Brambilla E, Borsellino G, . Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol. 2009;66:343–54.
  • Fainstein N, Vaknin I, Einstein O, Zisman P, Ben Sasson SZ, Baniyash M, . Neural precursor cells inhibit multiple inflammatory signals. Mol Cell Neurosci. 2008;39:335–41.
  • Einstein O, Fainstein N, Vaknin I, Mizrachi-Kol R, Reihartz E, Grigoriadis N, . Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann Neurol. 2007;61:209–18.
  • Einstein O, Karussis D, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Abramsky O, . Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci. 2003; 24:1074–82.
  • Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One. 2008;3:e3145.
  • Pluchino S, Zanotti L, Brambilla E, Rovere-Querini P, Capobianco A, Alfaro-Cervello C, . Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PloS One. 2009;4:e5959.
  • Modo M, Mellodew K, Rezaie P. In vitro expression of major histocompatibility class I and class II antigens by conditionally immortalized murine neural stem cells. Neurosci Lett. 2003;337:85–8.
  • McLaren FH, Svendsen CN, Van der Meide P, Joly E. Analysis of neural stem cells by flow cytometry: cellular differentiation modifies patterns of MHC expression. J Neuroimmunol. 2001;112:35–46.
  • Imitola J, Comabella M, Chandraker AK, Dangond F, Sayegh MH, Snyder EY, . Neural stem/progenitor cells express costimulatory molecules that are differentially regulated by inflammatory and apoptotic stimuli. Am J Pathol. 2004;164: 1615–25.
  • Johansson S, Price J, Modo M. Effect of inflammatory cytokines on major histocompatibility complex expression and differentiation of human neural stem/progenitor cells. Stem Cells. 2008;26:2444–54.
  • Ubiali F, Nava S, Nessi V, Frigerio S, Parati E, Bernasconi P, . Allorecognition of human neural stem cells by peripheral blood lymphocytes despite low expression of MHC molecules: role of TGF-beta in modulating proliferation. Int Immunol. 2007;19:1063–74.
  • Hall PE, Lathia JD, Miller NGA, Caldwell MA, Ffrench-Constant C. Integrins are markers of human neural stem cells. Stem Cells. 2006;24:2078–84.
  • Rampon C, Weiss N, Deboux C, Chaverot N, Miller F, Buchet D, . Molecular mechanism of systemic delivery of neural precursor cells to the brain: assembly of brain endothelial apical cups and control of transmigration by CD44. Stem Cells. 2008;26:1673–82.
  • Covacu R, Arvidsson L, Andersson A, Khademi M, Erlandsson-Harris H, Harris RA, . TLR activation induces TNF-alpha production from adult neural stem/progenitor cells. J Immunol. 2009;182:6889–95.
  • Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S, Van Griensven M, Stadler G, . Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng. 2007;13: 1173–83.
  • Lanzoni G, Alviano F, Marchionni C, Bonsi L, Costa R, Foroni L, . Isolation of stem cell populations with trophic and immunoregulatory functions from human intestinal tissues: potential for cell therapy in inflammatory bowel disease. Cytotherapy. 2009;11:1020–31.
  • Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, . Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 2005;35:1482–90.
  • Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, . Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–41.
  • Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, . Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106:1755–61.
  • Gonzalez-Rey E, Gonzalez MA, Varela N, O'Valle F, Hernandez-Cortes P, Rico L, . Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis. 2010;69:241–8.
  • Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M. Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arth Rheum. 2009;60:1006–19.
  • Gonzalez-Rey E, Anderson P, Gonzalez MA, Rico L, Buscher D, Delgado M. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 2009;58:929–39.
  • Nemeth K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K, . Bone marrow stromal cells attenuate sepsis via prostaglandin E-2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Med. 2009;15:42–9.
  • Ohnishi S, Yanagawa B, Tanaka K, Miyahara Y, Obata H, Kataoka M, . Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol. 2007;42:88–97.
  • Alejandro R, Ricordi C, Angelico MC, Nery J, Webb M, Fernandez L, . Donor bone marrow infusions in conjunction with liver-islet allotransplantation in patients with type 2 diabetes. Transplant Proc. 1997;29:745.
  • Akashi T, Shigematsu H, Hamamoto Y, Iwasaki H, Yatoh S, Bonner-Weir S, . Bone marrow or foetal liver cells fail to induce islet regeneration in diabetic Akita mice. Diabetes/metab Res Rev. 2008;24:585–90.
  • Beilhack GF, Scheffold YC, Weissman IL, Taylor C, Jerabek L, Burge MJ, . Purified allogeneic hematopoietic stem cell transplantation blocks diabetes pathogenesis in NOD mice. Diabetes. 2003;52:59–68.
  • Brendel MD, Kong SS, Schachner RD, Qian T, Selvaggi G, Alejandro R, . The influence of donor specific vertebral body derived bone marrow cell infusion on canine islet allograft survival without irradiation conditioning of the recipient. Exp Clin Endocrinol Diabetes. 1995;103(Suppl 2): 129–32.
  • Carroll PB, Fontes P, Rao AS, Ricordi C, Rilo HL, Zeevi A, . Simultaneous solid organ, bone marrow, and islet allotransplantation in type I diabetic patients. Transplantation Proc. 1994;26:3523–4.
  • Girman P, Kriz J, Dovolilova E, Cihalova E, Saudek F. The effect of bone marrow transplantation on survival of allogeneic pancreatic islets with short-term tacrolimus conditioning in rats. Ann Transplant. 2001;6:43–5.
  • Guo Z, Wu T, Sozen H, Pan Y, Heuss N, Kalscheuer H, . A substantial level of donor hematopoietic chimerism is required to protect donor-specific islet grafts in diabetic NOD mice. Transplantation. 2003;75:909–15.
  • Horton PJ, Hawthorne WJ, Walters SN, Patel AT, O'Connell PJ, Chapman JR, . Induction of allogeneic islet tolerance in a large-animal model. Cell Transplant. 2000;9:877–87.
  • Ikebukuro K, Adachi Y, Yamada Y, Fujimoto S, Seino Y, Oyaizu H, . Treatment of streptozotocin-induced diabetes mellitus by transplantation of islet cells plus bone marrow cells via portal vein in rats. Transplantation. 2002;73: 512–8.
  • Li H, Colson YL, Ildstad ST. Mixed allogeneic chimerism achieved by lethal and nonlethal conditioning approaches induces donor-specific tolerance to simultaneous islet allografts. Transplantation. 1995;60:523–9.
  • Li H, Inverardi L, Molano RD, Pileggi A, Ricordi C. Nonlethal conditioning for the induction of allogeneic chimerism and tolerance to islet allografts. Transplantation. 2003;75:966–70.
  • Li H, Kaufman CL, Boggs SS, Johnson PC, Patrene KD, Ildstad ST. Mixed allogeneic chimerism induced by a sublethal approach prevents autoimmune diabetes and reverses insulitis in nonobese diabetic (NOD) mice. J Immunol. 1996; 156:380–8.
  • Luo B, Nanji SA, Schur CD, Pawlick RL, Anderson CC, Shapiro AM. Robust tolerance to fully allogeneic islet transplants achieved by chimerism with minimal conditioning. Transplantation. 2005;80:370–7.
  • Ricordi C, Murase N, Rastellini C, Behboo R, Demetris AJ, Starzl TE. Donor bone marrow cell infusion without recipient cytoablation induces acceptance of rat islet allografts. Transplant Proc. 1994;26:3358.
  • Seung E, Iwakoshi N, Woda BA, Markees TG, Mordes JP, Rossini AA, . Allogeneic hematopoietic chimerism in mice treated with sublethal myeloablation and anti-CD154 antibody: absence of graft-versus-host disease, induction of skin allograft tolerance, and prevention of recurrent autoimmunity in islet-allografted NOD/Lt mice. Blood. 2000;95: 2175–82.
  • Wu T, Levay-Young B, Heuss N, Sozen H, Kirchhof N, Sutherland DE, . Inducing tolerance to MHC-matched allogeneic islet grafts in diabetic NOD mice by simultaneous islet and bone marrow transplantation under nonirradiative and nonmyeloablative conditioning therapy. Transplantation. 2002; 74:22–7.
  • Zhang C, Todorov I, Lin CL, Atkinson M, Kandeel F, Forman S, . Elimination of insulitis and augmentation of islet beta cell regeneration via induction of chimerism in overtly diabetic NOD mice. Proc Natl Acad Sci USA. 2007; 104:2337–42.
  • Sykes M. Mechanisms of tolerance induced via mixed chimerism. Front Biosci. 2007;12:2922–34.
  • Mineo D, Ricordi C, Xu X, Pileggi A, Garcia-Morales R, Khan A, . Combined islet and hematopoietic stem cell allotransplantation: a clinical pilot trial to induce chimerism and graft tolerance. Am J Transplant. 2008;8:1262–74.
  • Solari MG, Srinivasan S, Boumaza I, Unadkat J, Harb G, Garcia-Ocana A, . Marginal mass islet transplantation with autologous mesenchymal stem cells promotes long-term islet allograft survival and sustained normoglycemia. J Autoimmun. 2009;32:116–24.
  • Li FR, Wang XG, Deng CY, Qi H, Ren LL, Zhou HX. Immune modulation of co-transplantation mesenchymal stem cells with islet on T and dendritic cells. Clin Exp Immunol. 2010;161:357–63.
  • Longoni B, Szilagyi E, Quaranta P, Paoli GT, Tripodi S, Urbani S, . Mesenchymal stem cells prevent acute rejection and prolong graft function in pancreatic islet transplantation. Diabetes Technol Ther. 2010;12:435–46.
  • Berman DM, Willman MA, Han D, Kleiner G, Kenyon NM, Cabrera O, . Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes. 2010;59: 2558–68.
  • Melzi R, Antonioli B, Mercalli A, Battaglia M, Valle A, Pluchino S, . Co-graft of allogeneic immune regulatory neural stem cells (NPC) and pancreatic islets mediates tolerance, while inducing NPC-derived tumors in mice. PLoS One. 2010;5: e10357.
  • Pistoia V, Raffaghello L. Potential of mesenchymal stem cells for the therapy of autoimmune diseases. Exp Rev Clin Immunol. 2010;6:211–8.
  • Allison M. Genzyme backs osiris, despite prochymal flop. Nature Biotechnol. 2009;27:966–7.
  • Martin PJ, Uberti JP, Soiffer RJ, Klingemann H, Waller EK, Daly A, . Prochymal (R) improves response rates in patients with steroid-refractory acute graft-versus-host disease involving the liver and gut: results of a randomized, placebo-controlled, multicentre phase III trial in GvHD. Bone Marrow Transplant. 2010;45:S17.
  • Onken J, Jaffe T, Custer L. Long-term safety of prochymal adult mesenchymal stem cells in Crohn's disease. Gastroenterology. 2008;134:A661.
  • Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, . Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371:1579–86.
  • von Bonin M, Stolzel F, Goedecke A, Richter K, Wuschek N, Holig K, . Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant. 2009;43:245–51.
  • Joo SY, Cho KA, Jung YJ, Kim HS, Park SY, Choi YB, . Mesenchymal stromal cells inhibit graft-versus-host disease of mice in a dose-dependent manner. Cytotherapy. 2010;12: 361–70.
  • Tisato V, Naresh K, Navarrete C, Dazzi F. Mesenchymal stem cells are effective at preventing but not at treating GvHD. Biol Blood Marrow Transplant. 2007;13:44–5.
  • Yanez R, Lamana ML, Garcia-Castro J, Colmenero I, Ramirez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24:2582–91.
  • Puissant N, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, . Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol. 2005; 129:118–29.
  • Wang M, Yang Y, Yang DM, Luo F, Liang WJ, Guo SQ, . The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology. 2009;126:220–32.
  • Li CD, Zhang WY, Li HL, Jiang XX, Zhang Y, Tang PH, . Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Res. 2005;15:539–47.
  • Berman DM, Willman MA, Han DM, Kleiner G, Kenyon NM, Cabrera O, . Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes. 2010;59:2558–68.
  • Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, . Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature. 2003; 422:688–94.
  • de Haro J, Zurita M, Ayllon L, Vaquero J. Detection of 111In-oxine-labeled bone marrow stromal cells after intravenous or intralesional administration in chronic paraplegic rats. Neurosci Lett. 2005;377:7–11.
  • Paul C, Samdani AF, Betz RR, Fischer I, Neuhuber B. Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods. Spine. 2009; 34:328–34.
  • Ben-Hur T, Einstein O, Mizrachi-Kol R, Ben-Menachem O, Reinhartz E, Karussis D, . Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia. 2003;41:73–80.
  • Aguilar S, Nye E, Chan J, Loebinger M, Spencer-Dene B, Fisk N, . Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells. 2007;25:1586–94.
  • Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, . Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006;24:1095–103.
  • Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, . Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res. 2007;67:9142–9.
  • Zhang ZX, Guan LX, Zhang K, Wang S, Cao PC, Wang YH, . Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro. Cell Biol Int. 2007;31:645–8.
  • Zhou YF, Bosch-Marce M, Okuyama H, Krishnamachary B, Kimura H, Zhang L, . Spontaneous transformation of cultured mouse bone marrow-derived stromal cells. Cancer Res. 2006;66:10849–54.
  • Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, . Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 2007;25:371–9.
  • Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, . Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood. 2010;115:1549–53.
  • Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, . Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6: e1000029.
  • Thirabanjasak D, Tantiwongse K, Thorner PS. Angiomyeloproliferative lesions following autologous stem cell therapy. J Am Soc Nephrol. 2010;21:1218–22.
  • ISSCR. ISSCR guidelines for the clinical translation of stem cells. Appendix 1. Appendix 1B. Curr Prot Stem Cell Biol. 2009;9:A.1B.1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.