219
Views
1
CrossRef citations to date
0
Altmetric
Original Papers

Mesenchymal stromal cells impair the differentiation of CD14++ CD16 CD64+ classical monocytes into CD14++ CD16+ CD64++ activate monocytes

, , &
Pages 12-25 | Received 07 Mar 2011, Accepted 26 May 2011, Published online: 15 Aug 2011

References

  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6: 230–47.
  • Da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119:2204–13.
  • Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I. The role of mesenchymal stem cells in haemopoiesis. Blood Rev. 2006;20:161–71.
  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, . Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.
  • Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.
  • Schäfer R, Northoff H. Cardioprotection and cardiac regeneration by mesenchymal stem cells. Panminerva Med. 2008; 50:31–9.
  • Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY, . A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28:1099–106.
  • Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, . Human bone marrow stromal cells suppress T lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43.
  • Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, . Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30:42–8.
  • Yang M, Wei X, Li J, Heine LA, Rosenwasser R, Iacovitti L. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant. 2010;19:1073–84.
  • Zhao MZ, Nonoguchi N, Ikeda N, Watanable T, Furutama D, Miyazawa D, . Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab. 2006;26:1176–88.
  • Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, . Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol. 2000;18:307–16.
  • Ball LM, Bernardo ME, Roelofs H, Lankester A, Cometa A, Egeler RM, . Cotransplantation of ex-vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood. 2007;110:2764–7.
  • Macmillan ML, Blazar BR, DeFor TE, Wagner JE. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I–II clinical trial. Bone Marrow Transplant. 2009;43:447–54.
  • Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, . Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lance. 2004;363:1439–41.
  • Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, . Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371:1579–86.
  • Zhang W, Ge W, Li C, You S, Liao L, Han Q, . Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 2004;13:263–71.
  • Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, . Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105:2214–9.
  • Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, . Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005; 105:4120–6.
  • Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34 + -derived and monocyte-derived dendritic cells. J Immunol. 2006;177:2080–7.
  • Jung YJ, Ju SY, Yoo ES, Cho SJ, Cho KA, Woo SY, . MSC-DC interaction: MSC inhibit maturation and migration of BM-derived DC. Cytotherapy. 2007;9:451–8.
  • Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, . Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells. 2007;25:2025–32.
  • Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007;83:71–6.
  • English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett. 2008:115:50–8.
  • Li YP, Paczesny S, Lauret E, Poirault S, Bordigoni P, Mekhloufi F, . Human mesenchymal stem cells license adult CD34+ hemohemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J Immunol. 2008;180:1598–608.
  • Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood. 2009; 113:6576–83.
  • Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, . Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–9.
  • Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009;37:1445–53.
  • Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzón IM, Nepomnaschy I, . Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS ONE. 2010;5:1–13.
  • Groh ME, Maitra B, Szekely E, Koç ON. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol. 2005;33:928–34.
  • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.
  • Grage-Griebenow E, Flad HD, Ernst M. Heterogeneity of human peripheral blood monocyte subsets. J Leukoc Biol. 2001;69:11–20.
  • Ziegler-Heitbrock, HW. Heterogeneity of human blood monocytes: the CD14+ CD16+ subpopulation. Immunol Today. 1996;17:424–8.
  • Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–92.
  • Skrzeczynska-Moncznik J, Bzowska M, Loseke S, Grage-Griebenow E, Zembala M, Pryjma J. Peripheral blood CD14hi CD16+ monocytes are main producers of IL-10. Scand J Immunol. 2007;67:152–9.
  • Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J Leukoc Biol. 2007;81:584–92.
  • Tacke F, Randolph GJ. Migratory fate and differentiation of blood monocyte subsets. Immunobiol. 2006;211:609–18.
  • Yrlid U, Jenkins CD, MacPherson GG. Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions. J Immunol. 2006;176:4155–62.
  • Ancuta P, Liu K-Y, Misra V, Wacleche VS, Gosselin A, Zhou X, . Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16− monocyte subsets. BMC Genomics. 2009;10:1–19.
  • S nchez-Torres C, Garc a-Romo GS, Cornejo-Cort s MA, Rivas-Carvalho A, S nchez-Schmitz G. CD16+ and CD16− human blood monocyte subsets differentiate in vitro to dendritic cells with different abilities to stimulate CD4+ T cells. Int Immunol. 2001;13:1571–81.
  • Jakubzick C, Tacke F, Ginhoux F, Wagners AJ, van Rooijen N, Mack M, . Blood monocyte subsets differentially give rise to CD103+ and CD103− pulmonary dendritic cell populations. J Immunol. 2008;180:3019–27.
  • Randolph GJ, Sanchez-Schmitz G, Liebman RM, Schäkel K. The CD16+ (FcγRIII+) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med. 2002;196:517–27.
  • Grage-Griebenow E, Zawatzky R, Kahlert H, Brade L, Flad HD, Ernst M. Identification of a novel dendritic cell-like subset of CD64+ CD16+ blood monocytes. Eur J Immunol. 2001;31:48–56.
  • Chakraverty R, Sykes M. The role of antigen-presenting cells in triggering graft-versus-host disease and graft-versus-leukemia. Blood. 2007;110:9–17.
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, . Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.
  • Lazzarotto-Silva C, Binato R, Rocher BD, Costa JA, Pizzatti L, Bouzas LF, . Similar proteomic profiles of human mesenchymal stromal cells from different donors. Cytotherapy. 2009;11:268–77.
  • Dragowska WH, Lopes de Menezes DE, Sartor J, Mayer LD. Quantitative fluorescence cytometric analysis of Bcl-2 levels in tumor cells exhibiting a wide range of inherent Bcl-2 protein expression: correlation with Western blot analysis. Cytometry. 2000;40:346–52.
  • Storie I, Sawle A, Goodfellow K, Whitby L, Granger V, Reilly JT, . Flow rate calibration I: a novel approach for performing absolute cell counts. Cytometry B. 2003;55:1–7.
  • Wan CP, Park CS, Lau BHS. A rapid and simple microfluorometric phagocytosis assay. J Immunol Methods. 1993; 162:1–7.
  • Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, . Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24:386–98.
  • Jones S, Horwood N, Cope A, Dazzi F. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J Immunol. 2007;179: 2824–31.
  • Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, . IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol. 2008;38:1745–55.
  • Stec M, Weglarczyk K, Baran J, Zuba E, Mytar B, Pryjma J, . Expansion and differentiation of CD14+ CD16− and CD14++ CD16+ human monocyte subsets from cord blood CD34+ hematopoietic progenitors. J Leukoc Biol. 2007;82: 594–602.
  • Cutler AJ, Limbani V, Girdlestone J, Navarrete CV. Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol. 2010; 185:6617–23.
  • Ding W, Ke C, Wei TD, Zhi-Bo H, He R, Ying C . CD14+ monocytes promote the immunosuppressive effect of human umbilical cord matrix stem cells. Exp Cell Res. 2010;316: 2414–23.
  • Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins as modulators of immunity. Trends Immunol. 2002; 23:144–50.
  • Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharm Rev. 2004;56:387–437.
  • Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang CH, . 15-Deoxy-Δ12,14-prostaglandin J2 inhibits multiple steps in the NF-kB signaling pathway. Proc Natl Acad Sci. 2000;97:4844–9.
  • Scher JU, Pillinger MH. 15d-PGJ2: the anti-inflammatory prostaglandin? Clin Immunol. 2005;114:100–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.