56
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Polyunsaturated fatty acids confer cryoresistance on megakaryocytes generated from cord blood and also enhance megakaryocyte production from cryopreserved cord blood cells

, , &
Pages 366-380 | Received 02 Sep 2011, Accepted 01 Dec 2011, Published online: 17 Jan 2012

References

  • Liao Y, Geyer MB, Yang AJ, Cairo MS. Cord blood transplantation and stem cell regenerative potential. Exp Hematol. 2011;39:393–412.
  • Begemann PG, Hassan HT, Kroger N, Kruger W, Kabisch H, Zander AR. Correlation of time to platelet engraftment with amount of transplanted CD34+ CD41+ cells after allogeneic bone marrow transplantation. J Hematother Stem Cell Res. 2002;11:321–6.
  • Bertolini F, Battaglia M, Pedrazzoli P, Da Prada GA, Lanza A, Soligo D, . Megakaryocytic progenitors can be generated ex vivo and safely administered to autologous peripheral blood progenitor cell transplant recipients. Blood. 1997; 89:2679–88.
  • Decaudin D, Vantelon JM, Bourhis JH, Farace F, Bonnet ML, Guillier M, . Ex vivo expansion of megakaryocyte precursor cells in autologous stem cell transplantation for relapsed malignant lymphoma. Bone Marrow Transplant. 2004; 34:1089–93.
  • Drayer AL, Smit Sibinga CT, Esselink MT, de Wolf JT, Vellenga E. In vitro megakaryocyte expansion in patients with delayed platelet engraftment after autologous stem cell transplantation. Ann Hematol. 2002;81:192–7.
  • Scheding S, Bergmannn M, Rathke G, Vogel W, Brugger W, Kanz L. Additional transplantation of ex vivo generated megakaryocytic cells after high-dose chemotherapy. Haematologica. 2004;89:630–1.
  • Chen TW, Hwang SM, Chu IM, Hsu SC, Hsieh TB, Yao CL. Characterization and transplantation of induced megakaryocytes from hematopoietic stem cells for rapid platelet recovery by a two-step serum-free procedure. Exp Hematol. 2009; 37:1330–9.
  • Ratajczak MZ, Ratajczak J, Machalinski B, Mick R, Gewirtz AM. In vitro and in vivo evidence that ex vivo cytokine priming of donor marrow cells may ameliorate posttransplant thrombocytopenia. Blood. 1998;91:353–9.
  • Tijssen MR, van Hennik PB, di Summa F, Zwaginga JJ, van der Schoot CE, Voermans C. Transplantation of human peripheral blood CD34-positive cells in combination with ex vivo generated megakaryocytes results in fast platelet formation in NOD/SCID mice. Leukemia. 2008;22:203–8.
  • Angelopoulou M, Novelli E, Grove JE, Rinder HM, Civin C, Cheng L, . Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol. 2003;31:413–20.
  • Berthier R, Valiron O, Troesch A, Clemancey-Marcille G, Schweitzer A, Hollard D. Cryopreservation of human megakaryocytic progenitor cells (CFU-MK): influence of culture conditions. Cryobiology. 1989;26:265–72.
  • Pick M, Eldor A, Grisaru D, Zander AR, Shenhav M, Deutsch VR. Ex vivo expansion of megakaryocyte progenitors from cryopreserved umbilical cord blood. A potential source of megakaryocytes for transplantation. Exp Hematol. 2002; 30:1079–87.
  • Sasayama N, Kashiwakura I, Tokushima Y, Wada S, Murakami M, Hayase Y, . Expansion of megakaryocyte progenitors from cryopreserved leukocyte concentrates of human placental and umbilical cord blood in short-term liquid culture. Cytotherapy. 2001;3:117–26.
  • Xu Y, Kashiwakura I, Takahashi TA. High sensitivity of megakaryocytic progenitor cells contained in placental/umbilical cord blood to the stresses during cryopreservation. Bone Marrow Transplant. 2004;34:537–43.
  • Lazzari L, Lucchi S, Montemurro T, Porretti L, Lopa R, Rebulla P, . Evaluation of the effect of cryopreservation on ex vivo expansion of hematopoietic progenitors from cord blood. Bone Marrow Transplant. 2001;28:693–8.
  • Moezzi L, Pourfathollah AA, Alimoghaddam K, Soleimani M, Ardjmand AR. The effect of cryopreservation on clonogenic capacity and in vitro expansion potential of umbilical cord blood progenitor cells. Transplant Proc. 2005;37: 4500–3.
  • Gentry T, Deibert E, Foster SJ, Haley R, Kurtzberg J, Balber AE. Isolation of early hematopoietic cells, including megakaryocyte progenitors, in the ALDH-bright cell population of cryopreserved, banked UC blood. Cytotherapy. 2007;9:569–76.
  • Mwamtemi HH, Higuchi T, Sawai N, Hidaka E, Koike K. Quantitative and qualitative differences in thrombopoietin-dependent hematopoietic progenitor development between cord blood and bone marrow. Transplantation. 2000;69: 1645–54.
  • Eritsland J. Safety considerations of polyunsaturated fatty acids. Am J Clin Nutr. 2000;71(Suppl 1):197S–201S.
  • Holub BJ. Clinical nutrition. IV. Omega-3 fatty acids in cardiovascular care. Can Med Assoc J. 2002;166:608–15.
  • De Lorgeril M. Essential polyunsaturated fatty acids, inflammation, atherosclerosis and cardiovascular diseases. Subcell Biochem. 2007;42:283–97.
  • Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21:781–92.
  • Simopoulos AP. The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pac J Clin Nutr. 2008;17 (Suppl 1):131–4.
  • Davis-Brunoand K, Tassinari MS. Essential fatty acid supplementation of DHA and ARA and effects on neurodevelopment across animal species: a review of the literature. Birth Defects Res B Dev Reprod Toxicol. 2011;92: 240–50.
  • Siddiqui NF, Shabrani NC, Kale VP, Limaye LS. Enhanced generation of megakaryocytes from umbilical cord blood-derived CD34(+) cells expanded in the presence of two nutraceuticals, docosahexanoic acid and arachidonic acid, as supplements to the cytokine containing medium. Cytotherapy. 2011;13:114–28.
  • Sasnoor LM, Kale VP, Limaye LS. Supplementation of conventional freezing medium with a combination of catalase and trehalose results in better protection of surface molecules and functionality of hematopoietic cells. J Hematother Stem Cell Res. 2003;12:553–64.
  • Limaye LS, Kale VP. Cryopreservation of human haematopoietic cells with membrane stabilizers and bioantioxidants as additives in the conventional freezing medium. J Haematother Stem Cell Res. 2001;10:709–18.
  • Mattia G, Milazzo L, Vulcano F, Pascuccio M, Macioce G, Hassan HJ, . Long-term platelet production assessed in NOD/SCID mice injected with cord blood CD34+ cells, thrombopoietin-amplified in clinical grade serum-free culture. Exp Hematol. 2008;36:244–52.
  • Chen TW, Yao CL, Chu IM, Chuang TL, Hsieh TB, Hwang SM. Large generation of megakaryocytes from serum-free expanded human CD34+ cells. Biochem Biophys Res Commun. 2009;378:112–17.
  • O'Brien JJ, Spinelli SL, Tober J, Blumberg N, Francis CW, Taubman MB, . 15-deoxydelta12,14-PGJ2 enhances platelet production from megakaryocytes. Blood. 2008;112: 4051–60.
  • Shirvaikar N, Reca R, Jalili A, Marquez-Curtis L, Lee SF, Ratajczak MZ, . CFUmegakaryocytic progenitors expanded ex vivo from cord blood maintain their in vitro homing potential and express matrix metalloproteinases. Cytotherapy. 2008;10:182–92.
  • De Bruyn C, Delforge A, Martiat P, Bron D. Ex vivo expansion of megakaryocyte progenitor cells: cord blood versus mobilized peripheral blood. Stem Cells Dev. 2005;14: 415–24.
  • Su RJ, Li K, Yang M, Zhang XB, Tsang KS, Fok TF, Li CK, Yuen PM. Platelet-derived growth factor enhances ex vivo expansion of megakaryocytic progenitors from human cord blood. Bone Marrow Transplant. 2001;27:1075–80.
  • Schipper LF, Brand A, Reniers N, Melief CJ, Willemze R, Fibbe WE. Differential maturation of megakaryocyte progenitor cells from cord blood and mobilized peripheral blood. Exp Hematol. 2003;31:324–30.
  • Oudenrijn S, Borne AKV, Haas M. Difference in megakaryocyte expansion potential between CD34+ stem cells derived from cord blood, peripheral blood and bone marrow from adults and children. Exp Hematol. 2000;28:1054–61.
  • Tao H, Gaudry L, Rice A, Chong B. Megakaryopoiesis: cord blood is better than bone marrow for generating megakaryocytic progenitor cells. Exp Hematol. 1999;27:293–301.
  • Sahler J, Bernard JJ, Spinelli SL, Blumberg N, Phipps RP. The feverfew plant-derived compound, parthenolide enhances platelet production and attenuates platelet activation through NF-κB inhibition. Thromb Res. 2011;127:426–34.
  • Petronelli A, Pelosi E, Santoro S, Saulle E, Cerio AM, Mariani G, . CDDO-Im is a stimulator of megakaryocytic differentiation. Leuk Res. 2011;35:534–44.
  • Boyer L, Robert A, Proulx C, Pineault N. Increased production of megakaryocytes near purity from cord blood CD34+ cells using a short two-phase culture system. J Immunol Methods. 2008;332:82–91.
  • Kashiwakura I, Takahashi K, Monzen S, Nakamura T, Takagaki K. Ex vivo expansions of megakaryocytopoiesis from placental and umbilical cord blood CD34(+) cells in serum-free culture supplemented with proteoglycans extracted from the nasal cartilage of salmon heads and the nasal septum cartilage of whale. Life Sci. 2008;82:1023–31.
  • Kishore V, Eliason JF, Matthew HW. Covalently immobilized glycosaminoglycans enhance megakaryocyte progenitor expansion and platelet release. J Biomed Mater Res A. 2011; 96:682–92.
  • Matsunaga T, Tanaka I, Kobune M, Kawano Y, Tanaka M, Kuribayashi K, . Ex vivo large-scale generation of human platelets from cord blood CD34+ cells. Stem Cells. 2006; 24:2877–87.
  • Mattia G, Vulcano F, Milazzo L, Barca A, Macioce G, Giampaolo A, . Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood. 2002;99:888–97.
  • Reems JA, Pineault N, Sun S. In vitro megakaryocyte production and platelet biogenesis: state of the art. Transfus Med Rev. 2010;24:33–43.
  • Sullenbarger B, Bahng JH, Gruner R, Kotov N, Lasky LC. Prolonged continuous in vitro human platelet production using three-dimensional scaffolds. Exp Hematol. 2009;37: 101–10.
  • Calder PC. Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie. 2009;91: 791–5.
  • Chapkin RS, Kim W, Lupton JR, McMurray DN. Dietary docosahexaenoic and eicosapentaenoic acid: emerging mediators of inflammation. Prostaglandins Leukot Essent Fatty Acids. 2009;81:187–91.
  • Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res. 2011;50:35–51.
  • Hughes-Fulford M, Tjandrawinata RR, Li CF, Sayyah S. Arachidonic acid, an omega-6 fatty acid, induces cytoplasmic phospholipase A2 in prostate carcinoma cells. Carcinogenesis. 2005;26:1520–6.
  • Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST. Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA. 2003;100:1751–6.
  • Chan AC, Wagner M, Kennedy C, Chen E, Lanuville O, Mezl VA, . Vitamin E up-regulates arachidonic acid release and phospholipase A2 in megakaryocytes. Mol Cell Biochem. 1998;189:153–9.
  • Sergeeva M, Strokin M, Reiser G. Regulation of intracellular calcium levels by polyunsaturated fatty acids, arachidonic acid and docosahexaenoic acid, in astrocytes: possible involvement of phospholipase A2. Reprod Nutr Dev. 2005;45:633–46.
  • Franks DJ, Mroske C, Laneuville O. A fluorescence microscopy method for quantifying levels of prostaglandin endoperoxide H synthase-1 and CD-41 in MEG-01 cells. Biol Proced Online. 2001;3:54–63.
  • Mroske C, Plant MH, Franks DJ, Laneuville O. Characterization of prostaglandin endoperoxide H synthase-1 enzyme expression during differentiation of the megakaryocytic cell line MEG-01. Exp Hematol. 2000;28:411–21.
  • Tanaka N, Sato T, Fujita H, Morita I. Constitutive expression and involvement of cyclooxygenase-2 in human megakaryocytopoiesis. Arterioscler Thromb Vasc Biol. 2004;24:607–12.
  • Rocca B, Secchiero P, Ciabattoni G, Ranelletti FO, Catani L, Guidotti L, . Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proc Natl Acad Sci USA. 2002;99:7634–9.
  • Guillot N, Debard C, Calzada C, Vidal H, Lagarde M, Vericel E. Effects of docosahexaenoic acid on some megakaryocytic cell gene expression of some enzymes controlling prostanoid synthesis. Biochem Biophys Res Commun. 2008;372:924–8.
  • Miyazaki R, Ogata H, Iguchi T, Sogo S, Kushida T, Ito T, . Comparative analyses of megakaryocytes derived from cord blood and bone marrow. Br J Haematol. 2000;108: 602–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.