147
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Dendritic cell vaccination in acute myeloid leukemia

, , , &
Pages 647-656 | Received 02 Apr 2012, Accepted 22 May 2012, Published online: 11 Jun 2012

References

  • Anguille S, Lion E, Smits E, Berneman ZN, van Tendeloo VFI. Dendritic cell vaccine therapy for acute myeloid leukemia. Questions and answers. Human Vaccines. 2011;7: 579–84.
  • Smits E, Berneman ZN, Van Tendeloo VFI. Immunotherapy of acute myeloid leukemia: current approaches. Oncologist. 2009;14:240–52.
  • Barrett AJ, Le Blanc K. Immunotherapy prospects for acute myeloid leukaemia. Clin Exp Immunol. 2010;161:223–32.
  • Cools N, Ponsaerts P, Van Tendeloo VF, Berneman ZN. Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukoc Biol. 2007;82:1365–74.
  • Zinkernagel RM, Hengartner H. Regulation of the immune response by antigen. Science. 2001;293:251–3.
  • Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol. 2006;6:476–83.
  • Anguille S, Smits EL, Cools N, Goossens H, Berneman ZN, Van Tendeloo VF. Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. J Transl Med. 2009;7:109.
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77.
  • Greiner J, Schmitt M, Li L, Giannopoulos K, Bosch K, Schmitt A, . Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood. 2006;108:4109–17.
  • Alatrash G, Molldrem JJ. Vaccines as consolidation therapy for myeloid leukemia. Expert Rev Hematol. 2011;4:37–50.
  • Degli-Esposti MA, Smyth MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol. 2005;5:112–24.
  • Moretta L, Ferlazzo G, Bottino C, Vitale M, Pende D, Mingari MC, . Effector and regulatory events during natural killer–dendritic cell interactions. Immunol Rev. 2006;214: 219–28.
  • Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9:503–10.
  • Li L, Reinhardt P, Schmitt A, Barth TFE, Greiner J, Ringhoffer M, . Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother. 2005;54:685–93.
  • van den Ancker W, van Luijn MM, Westers TM, Bontkes HJ, Ruben JM, de Gruijl TD, . Recent advances in antigen-loaded dendritic cell-based strategies for treatment of minimal residual disease in acute myeloid leukemia. Immunotherapy. 2010;2:69–83.
  • Cignetti A, Vallario A, Roato I, Circosta P, Allione B, Casorzo L, . Leukemia-derived immature dendritic cells differentiate into functionally competent mature dendritic cells that efficiently stimulate T cell responses. J Immunol. 2004;173:2855–65.
  • van de Loosdrecht AA, van den Ancker W, Houtenbos I, Ossenkoppele GJ, Westers TM. Dendritic cell-based immunotherapy in myeloid leukaemia: translating fundamental mechanisms into clinical applications. Handb Exp Pharmacol. 2009:319–48.
  • Kremser A, Dressig J, Grabrucker C, Liepert A, Kroell T, Scholl N, . Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods. J Immunother. 2010;33:185–99.
  • Houtenbos I, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA. Feasibility of clinical dendritic cell vaccination in acute myeloid leukemia. Immunobiology. 2006;211:677–85.
  • Houtenbos I, Westers TM, Ossenkoppele GJ, van de Loosdrecht AA, Hess CJ, Waisfisz Q. Flt-3 internal tandem duplication hampers differentiation of AML blasts towards leukemic dendritic cells. Leukemia. 2006;20:1892–5.
  • Roddie PH, Turner ML. Leukemic blasts from patients with karyotypically poor risk AML are resistant to cytokine induced differentiation into dendritic like cells. Blood. 2000;96: 707A–707A.
  • Grabrucker C, Liepert A, Dreyig J, Kremser A, Kroell T, Freudenreich M, . The quality and quantity of leukemia-derived dendritic cells from patients with acute myeloid leukemia and myelodysplastic syndrome are a predictive factor for the lytic potential of dendritic cells-primed leukemia-specific T cells. J Immunother. 2010;33:523–37.
  • Narita M, Takahashi M, Liu A, Nikkuni K, Furukawa T, Toba K, . Leukemia blast-induced T-cell anergy demonstrated by leukemia-derived dendritic cells in acute myelogenous leukemia. Exp Hematol. 2001;29:709–19.
  • Rosenblatt J, Stone R, Wu Z, Vasir B, Deangelo D, Galinsky I, . Leukemia derived dendritic cells (LDCs) may be ineffective as a cancer vaccine for acute myeloid leukemia (AML). J Clin Oncol. 2005;23:172S–172S.
  • Curti A, Pandolfi S, Aluigi M, Isidori A, Alessandrini I, Chiodoni C, . Interleukin-12 production by leukemia-derived dendritic cells counteracts the inhibitory effect of leukemic microenvironment on T cells. Exp Hematol. 2005;33:1521–30.
  • Fujii S, Shimizu K, Koji F, Kawano F. Malignant counterpart of myeloid dendritic cell (DC) belonging to acute myelogenous leukemia (AML) exhibits a dichotomous immunoregulatory potential. J Leukoc Biol. 2003;73:82–90.
  • Curti A, Trabanelli S, Onofri C, Aluigi M, Salvestrini V, Ocadlikova D, . Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica. 2010;95:2022–30.
  • Santegoets S, Schreurs MWJ, Masterson AJ, Liu YP, Goletz S, Baumeister H, . In vitro priming of tumor-specific cytotoxic T lymphocytes using allogeneic dendritic cells derived from the human MUTZ-3 cell line. Cancer Immunol Immunother. 2006;55:1480–90.
  • Yamahira A, Narita M, Nakamura T, Watanabe N, Kaji M, Taniguchi T, . Generation of antigen-specific cytotoxic T lymphocytes using a leukemic plasmacytoid dendritic cell line as antigen presenting cells. Leuk Res. 2011;35:793–799.
  • Narita M, Watanabe N, Yamahira A, Hashimoto S, Tochiki N, Saitoh A, . A leukemic plasmacytoid dendritic cell line, PMDC05, with the ability to secrete IFN-alpha by stimulation via Toll-like receptors and present antigens to naive T cells. Leuk Res. 2009;33:1224–32.
  • Rasaiyaah J, Noursadeghi M, Kellam P, Chain B. Transcriptional and functional defects of dendritic cells derived from the MUTZ-3 leukaemia line. Immunology. 2009;127:429–41.
  • Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, . Proliferating dendritic cell progenitors in human blood. J Exp Med. 1994;180:83–93.
  • Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, . Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol. 1997;27:3135–42.
  • Van Driessche A, Van de Velde ALR, Nijs G, Braeckman T, Stein B, De Vries JM, . Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy. 2009;11:653–68.
  • Kitawaki T, Kadowaki N, Kondo T, Ishikawa T, Ichinohe T, Teramukai S, . Potential of dendritic-cell immunotherapy for relapse after allogeneic hematopoietic stem cell transplantation, shown by WT1 peptide- and keyhole-limpet-hemocyanin-pulsed, donor-derived dendritic-cell vaccine for acute myeloid leukemia. Am J Hematol. 2008;83:315–7.
  • Lee JJ, Kook H, Park MS, Nam JH, Choi BH, Song WH, . Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysates for acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation. J Clin Apher. 2004;19:66–70.
  • Royer PJ, Bougras G, Ebstein F, Leveque L, Tanguy-Royer S, Simon T, . Efficient monocyte-derived dendritic cell generation in patients with acute myeloid leukemia after chemotherapy treatment: application to active immunotherapy. Exp Hematol. 2008;36:329–39.
  • Lee JJ, Choi BH, Kang HK, Kim SK, Nam JH, Yang DH, . Monocyte-derived dendritic cells from HLA-matched allogeneic donors showed a greater ability to induce leukemic cell-specific T cells in comparison to leukemic cell-derived dendritic cells or monocyte-derived dendritic cells from AML patients. Leuk Res. 2008;32:1653–60.
  • Spisek R, Chevallier P, Morineau N, Milpied N, Avet-Loiseau H, Harousseau JL, . Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res. 2002;62:2861–8.
  • Lee JJ, Nam CE, Nam JH, Lee HC, Chung IJ, Park MS, . Generation of cytotoxic donor CD8+ T cells against relapsing leukemic cells following allogeneic transplantation by stimulation with leukemic cell- or leukemic lysate pulsed donor cell-derived dendritic cells. Leuk Res. 2004;28:517–24.
  • Draube A, Beyer M, Wolf J. Activation of autologous leukemia-specific T cells in acute myeloid leukemia: monocyte-derived dendritic cells cocultured with leukemic blasts compared with leukemia-derived dendritic cells. Eur J Haematol. 2008;81: 281–8.
  • Delluc S, Tourneur L, Michallet AS, Boix C, Varet B, Fradelizi D, . Autologous peptides eluted from acute myeloid leukemia cells can be used to generate specific antileukemic CD4 helper and CD8 cytotoxic T lymphocyte responses in vitro. Haematol Hematol J. 2005;90:1050–62.
  • Kitawaki T, Kadowaki N, Fukunaga K, Kasai Y, Maekawa T, Ohmori K, . A phase I/IIa clinical trial of immunotherapy for elderly patients with acute myeloid leukaemia using dendritic cells co-pulsed with WT1 peptide and zoledronate. Br J Haematol. 2011;153:796–9.
  • Fujii S, Shimizu K, Fujimoto K, Kiyokawa T, Tsukamoto A, Sanada I, . Treatment of post-transplanted, relapsed patients with hematological malignancies by infusion of HLA-matched, allogeneic-dendritic cells (DCs) pulsed with irradiated tumor cells and primed T cells. Leuk Lymphoma. 2001;42: 357–69.
  • Kitawaki T, Kadowaki N, Fukunaga K, Kasai Y, Maekawa T, Ohmori K, . Cross-priming of CD8(+) T cells in vivo by dendritic cells pulsed with autologous apoptotic leukemic cells in immunotherapy for elderly patients with acute myeloid leukemia. Exp Hematol. 2011;39:424–433.
  • Galea-Lauri J, Darling D, Mufti G, Harrison P, Farzaneh F. Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell–leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination. Cancer Immunol Immunother. 2002;51:299–310.
  • Lee JJ, Park MS, Park JS, Kang HK, Kim SK, Pham TNN, . Induction of leukemic-cell-specific cytotoxic T lymphocytes by autologous monocyte-derived dendritic cells presenting leukemic cell antigens. J Clin Apheresis. 2006;21:188–94.
  • Schottker B, Schmidt-Wolf IG. Pulsing with blast cell lysate or blast-derived total RNA reverses the dendritic cell-mediated cytotoxic activity of cytokine-induced killer cells against allogeneic acute myelogenous leukemia cells. Ger Med Sci. 2011;9: Doc18 according to PubMed.
  • Rosenblatt J, Stone RM, Avivi I, Uhl L, Neuberg D, Joyce R, . Clinical trial evaluating DC/AML fusion cell vaccination alone and in conjunction with PD-1 blockade in AML patients who achieve a chemotherapy-induced remission. Blood. 2011;118:432–3.
  • Lei Z, Zhang GM, Hong M, Feng ZH, Huang B. Fusion of dendritic cells and CD34+CD38– acute myeloid leukemia (AML) cells potentiates targeting AML-initiating cells by specific CTL induction. J Immunother. 2009;32:408–14.
  • Klammer M, Waterfall M, Samuel K, Turner ML, Roddie PH. Fusion hybrids of dendritic cells and autologous myeloid blasts as a potential cellular vaccine for acute myeloid leukaemia. Br J Haematol. 2005;129:340–9.
  • Gong JL, Koido S, Kato Y, Tanaka Y, Chen DS, Jonas A, . Induction of anti-leukemic cytotoxic T lymphocytes by fusion of patient-derived dendritic cells with autologous myeloblasts. Leuk Res. 2004;28:1303–12.
  • Banat GA, Usluoglu N, Hoeck M, Ihlow K, Hoppmann S, Pralle H. Dendritic cells fused with core binding factor-beta positive acute myeloid leukaemia blast cells induce activation of cytotoxic lymphocytes. Br J Haematol. 2004;126:593–601.
  • Van Tendeloo VF, de Velde AV, Van Driessche A, Cools N, Anguille S, Ladell K, . Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci USA. 2010;107:13824–9.
  • DiPersio JF, Collins RH, Blum W, Devetten MP, Stiff P, Elias L, . Immune responses in AML patients following vaccination with GRNVAC1, autologous RNA transfected dendritic cells expressing telomerase catalytic subunit hTERT. Blood. 2009;114:262–262.
  • Smits EL, Anguille S, Cools N, Berneman ZN, Van Tendeloo VF. Dendritic cell-based cancer gene therapy. Hum Gene Ther. 2009;20:1106–18.
  • Weigel BJ, Nath N, Taylor PA, Panoskaltsis-Mortari A, Chen W, Krieg AM, . Comparative analysis of murine marrow-derived dendritic cells generated by Flt3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia responses. Blood. 2002;100:4169–76.
  • Weigel BJ, Panoskaltsis-Mortari A, Diers M, Garcia M, Lees C, Krieg AM, . Dendritic cells pulsed or fused with AML cellular antigen provide comparable in vivo antitumor protective responses. Exp Hematol. 2006;34:1403–12.
  • Fujii S, Fujimoto K, Shimizu K, Ezaki T, Kawano F, Takatsuki K, . Presentation of tumor antigens by phagocytic dendritic cell clusters generated from human CD34+ hematopoietic progenitor cells: induction of autologous cytotoxic T lymphocytes against leukemic cells in acute myelogenous leukemia patients. Cancer Res. 1999;59:2150–8.
  • Fujii S, Fujimoto K, Osato M, Matsui K, Takatsuki K, Kawakita M. Induction of antitumor cytotoxic activity using CD34+ cord blood cell-derived and irradiated tumor cell-primed dendritic cells. Int J Hematol. 1998;68:169–82.
  • Osugi Y, Vuckovic S, Hart DN. Myeloid blood CD11c(+) dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes. Blood. 2002;100: 2858–66.
  • Sanchez J, Herrera C, Torres A, Roman-Gomez J, Alvarez MA. Chemotherapy plus G-CSF mobilized peripheral blood stem cell harvests from acute myeloid leukaemia patients contain large amounts of polyclonal myeloid linnegCD11cpos dendritic precursor cells. Br J Haematol. 2004;124:636–44.
  • Serrano-Lopez J, Sanchez-Garcia J, Serrano J, Alvarez-Rivas MA, Garcia-Castellano JM, Roman-Gomez J, . Nonleukemic myeloid dendritic cells obtained from autologous stem cell products elicit antileukemia responses in patients with acute myeloid leukemia. Transfusion. 2011;51: 1546–55.
  • Klangsinsirikul P, Russell NH. Peripheral blood stem cell harvests from G-CSF-stimulated donors contain a skewed Th2 CD4 phenotype and a predominance of type 2 dendritic cells. Exp Hematol. 2002;30:495–501.
  • Mohty M, Jarrossay D, Lafage-Pochitaloff M, Zandotti C, Briere F, de Lamballeri XN, . Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment. Blood. 2001;98:3750–6.
  • Fujii S, Hamada H, Fujimoto K, Shimomura T, Kawakita M. Activated dendritic cells from bone marrow cells of mice receiving cytokine-expressing tumor cells are associated with the enhanced survival of mice bearing syngeneic tumors. Blood. 1999;93:4328–35.
  • Pawlowska AB, Hashino S, McKenna H, Weigel BJ, Taylor PA, Blazar BR. In vitro tumor-pulsed or in vivo Flt3 ligand-generated dendritic cells provide protection against acute myelogenous leukemia in nontransplanted or syngeneic bone marrow-transplanted mice. Blood. 2001;97:1474–82.
  • Roddie H, Klammer M, Thomas C, Thomson R, Atkinson A, Sproul A, . Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br J Haematol. 2006;133:152–7.
  • Li L, Giannopoulos K, Reinhardt P, Tabarkiewicz J, Schmitt A, Greiner J, . Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol. 2006;28:855–61.
  • Khoury HJ, Collins RH, Blum W, Maness L, Stiff P, Kelsey SM, . Prolonged administration of the telomerase vaccine GRNVAC1 is well tolerated and appears to be associated with favorable outcomes in high-risk acute myeloid leukemia (AML). Blood. 2010;116:904–904.
  • Melenhorst JJ, Scheinberg P, Chattopadhyay PK, Gostick E, Ladell K, Roederer M, . High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow. Blood. 2009;113:2238–44.
  • Ueno H, Schmitt N, Klechevsky E, Pedroza-Gonzalez A, Matsui T, Zurawski G, . Harnessing human dendritic cell subsets for medicine. Immunol Rev. 2010;234:199–212.
  • Anguille S, Lion E, Willemen Y, Van Tendeloo VF, Berneman ZN, Smits EL. Interferon-alpha in acute myeloid leukemia: an old drug revisited. Leukemia. 2011;25:739–748.
  • Lion E, Willemen Y, Berneman ZN, Van Tendeloo VF, Smits EL. Natural killer cell immune escape in acute myeloid leukemia. Leukemia. 2012 DOI: 10.1038/leu.2012.87.
  • Berneman ZN, Van de Velde A, Anguille S, Cools N, Van Driessche A, Vermeulen K, . WT1-targeted dendritic cell vaccination as a post-remission treatment to prevent full relapse in acute myeloid leukemia. Blood. 2010;116:12–3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.