1,619
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Purification and identification of two antifungal cyclic dipeptides from Bacillus cereus subsp. thuringiensis associated with a rhabditid entomopathogenic nematode especially against Fusarium oxysporum

, &
Pages 190-197 | Received 09 Nov 2012, Accepted 02 Jan 2013, Published online: 13 Feb 2013

References

  • Gordon TR, Martyn RD. The evolutionary biology of Fusarium oxysporum. Annu Rev Phytopathol 1997;35:111–28
  • Brayford D. Fusarium oxysporum f. sp. radicis-lycopersici, IMI descriptions of fungi and bacteria no. 1270. Mycopathol 1996;133:61–3
  • Ploetz RC. Population biology of Fusarium oxysporum f. sp. cubense. In: Ploetz RC, ed. Fusarium wilt of banana. St. Paul (MN): APS Press; 1990:63–76
  • Albisetti M, Lauener RP, Gungor T, et al. Disseminated Fusarium oxysporum infection in hemophagocytic lymphohistiocytosis. Infection 2004;32:364–6
  • Biondi N, Piccardi R, Margheri MC, et al. Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Microbiol 2004;70:3313–20
  • Khan Z, Kim YH, Kim SG, Kim HW. Observation of the suppression of root-knot nematode (Meloigogyne arenaria) on tomato by incorporation of cyanobacteria power (Oscillatoria chlorine) into potting filed soil. Bioresour Technol 2007;98:69–73
  • Khalifa EZ, El-Shenawy Z, Awad HM. Biological control of damping-off and root-rot of sugar beet. Egypt J Phytopathol 1995;23:39–51
  • Lewis JA, Lumsden RD, Locke JC. Biocontrol of damping-off diseases caused by Rhizoctonia solani and Pythium ultimum with alginate prills of Gliocladium virens, Trichoderma hamatum and various food bases. Biocont Sci Technol 1996;6:163–73
  • Sutton TB. Changing options for the control of deciduous fruit tree diseases. Annu Rev Phytopathol 1996;34:527–47
  • Burnell AM, Stock SP. Heterorhabditis, Steinernema and their bacterial symbionts – lethal pathogens of insects. Nematol 2000;2:31–42
  • Dowds BCA, Peters A. Virulence mechanisms. In: Gaugler R, ed. Entomopathogenic nematology. New York (NY): CABI; 2002:79–98
  • Akhurst RJ. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Hettrorhabditidae and Steinernematidae. J Gen Microbiol 1982;128:3061–5
  • Chen G, Dunphy GB, Webster JM. Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis. Biol Cont 1994;4:157–62
  • Chen G, Maxwell P, Dunphy GB, Webster JM. Culture conditions for Xenorhabdus and Photorhabdus symbionts of entomopathogenic nematodes. Nematologica 1996;42:124–7
  • Paul VJ, Frautschy S, Fenical W, Nealson KH. Antibiotics in microbial ecology, isolation and structure assignment of several new antibacterial compounds from the insect symbiotic bacteria Xenorhabdus spp. J Chem Ecol 1981;7:589–97
  • Hu K, Li J, Webster JM. Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes. Nematol 1999;1:457–69
  • McInerney BV, Gregson RP, Lacey MJ, et al. Biologically active metabolites from Xenorhabdus spp. Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prods 1991;54:774–84
  • McInerney BV, Taylor WC, Lacey MJ, et al. Biologically active metabolites from Xenorhabdus spp. Part 2. Benzopyran-1-one derivatives with gastroprotective activity. J Nat Prods 1991;54:785–95
  • Li JX, Chen GH, Webster JM. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Canadian J Microbiol 1997;43:770–3
  • Ji DJ, Yi YK, Kang GH. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol Lett 2004;239:241–8
  • Lang, G, Kalvelage T, Peters A, et al. Peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. J Nat Prods 2008;71:1074–7
  • Gualtieri M, Aumelasm A, Thaler JO. Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. J Antibiot 2009;62:295–302
  • Deepa I, Mohandas C, Makesh KT, et al. Identification of new entomopathogenic nematodes (EPNs) based on sequences of D2-D3 expansion fragments of the 28SrRNA. J Root Crops 2010;36:227–32
  • Mohandas C, Sheeba M, Firoza AJ, Rajamma P. Bacteria associated with Rhabditis (Oscheius) spp. (Rhabditidae: Nematoda) for the biocontrol of insect pests. Proc Nat Seminar on Achievements and Opportunities in Post harvest Management and Value Addition in Root and Tuber Crops (NSRTC – 2);2007:195–8
  • Marfey P. Determination of D-amino acids. II. Use of a bifunctional reagents, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res Commun 1984;49:591–6
  • Rollas S, Kalyoncuoglu N, Sur-Altiner D, Yegenglu Y. 5-(4-Aminophenyl)-4-substituted 2,4-dihydro-3H-1,2,4-triazole-3-thiones: synthesis, antibacterial and antifungal activities. Pharmazie 1993;48:308–9
  • Clinical and Laboratory Standards Institute (CLSI). Reference methods for broth dilution antifungal susceptibility tests of yeasts. CLSI documents M27-S3. 940 West Valley Road, Suite 1400, Wayne, Pennsylvania, USA; 2008
  • Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI documents M27-S3. 940 West Valley Road, Suite 1400, Wayne, Pennsylvania, USA; 2006
  • Murray PR, Baron EJ, Pfaller MA, et al. Manual of clinical microbiology. Washington (DC): ASM; 1995
  • Gomez KA, Gomez AA. Presentation of research results. Statistical Procedures for Agricultural Research. New York: A Wiley-Interscience Publication; 1984
  • Krejcarek GE, Dominy BH, Lawton RG. The interaction of reactive functional groups along peptide chains. A model for alkaloid biosynthesis. Chem Commun 1968:1450–2
  • Prasad C. Bioactive cyclic dipeptides. Peptides 1995;16:151–64
  • Rudi A, Kashman Y, Benayahu Y, Schleyer M. Amino acid derivatives from the marine sponge Jaspis digonoxea. J Nat Prod 1994;57:829–32
  • Strom K, Sjogren J, Broberg A, Schnurer J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(l-Phe-l-Pro) and cyclo(l-Phe-trans-4-OH-l-pro) and 3-phenyllactic acid. Appl Environ Microbiol 2002;68:4322–7
  • Rosa SD, Mitova M, Tommonaro G. Marine bacteria associated with sponge as source of cyclic peptides. Biomol Eng 2003;20:311–16
  • Lucietto FR, Milne PJ, Kilian G, et al. The biological activity of the histidine-containing diketopiperazines cyclo(His-Ala) and cyclo(His-Gly). Peptides 2006;26:2706–14
  • Anteunis MJO. The cyclic dipeptides: proper model compounds in peptide research. Bull Chem Soc Belgium 1978;87:627–50
  • Nicholson B, Lloyd GK, Miller BR, et al. NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent. Anticancer Drugs 2006;7:25–31
  • Sinha S, Srivastava R, De Clercq E, Singh RK. Synthesis and antiviral properties of arabino and ribonucleosides of 1,3-dideazaadenine, 4-nitro-1,3-dideazaadenine and diketopiperazine. Nucleos Nucleot Nucl Acids 2004;23:1815–24
  • Houston DR, Synstad B, Eijsink VGH, et al. Structure-based exploration of cyclic dipeptide chitinase inhibitors. J Med Chem 2004;47:5713–20
  • Kwon OS, Park SH, Yun B, et al. Cyclo(dehydroala-L-Leu), an α- glucosidase inhibitor from Penicillium sp. F70614. J Antibiot 2000;53:954–8
  • McCleland K, Milne PJ, Lucietto FR, et al. An investigation into the biological activity of the selected histidine-containing diketopiperazines cyclo(His-Phe) and cyclo(His-Tyr). J Pharm Pharmacol 2004;56:1143–53
  • Stierle AC, Cardellina JH, Strobel GA. Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria alternate. Proc Natl Acad Sci USA 1988;85:8008–11
  • Cain CC, Dongho L, Robert H, et al. Synergistic antimicrobial activity of metabolites produced by a nonobligate bacterial predator. Antimicrob Agents Chemother 2003;47:2113–17
  • Smaoui SF, Mathieu F, Elleuch L, et al. Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain. World J Microbiol Biotechnol 2012;28:793–804
  • Teasdale ME, Donovan KA, Forschner-Dancause SR, Rowley DC. Gram-positive marine bacteria as a potential resource for the discovery of quorum sensing inhibitors. Marine Biotechnol 2011;13:722–32
  • Jayatilake GS, Thornton MP, Leonard AC, et al. Metabolites from an antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J Nat Prod 1996;59:293–6
  • Shin HJ, Mojid Mondol MA, Yu TK, et al. An angiogenesis inhibitor isolated from a marine-derived actinomycete, Nocardiopsis sp. 03N67. Phytochem Lett 2010;3:194–7
  • Li J, Wangb W, Xua SX, et al. Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc Natl Acad Sci USA 2011;108:3360–5
  • Holden MTG, Chhabra SR, de Nys R, et al. Quorem-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram negative bacteria. Mol Microbiol 1999;33:1254–60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.