2,427
Views
18
CrossRef citations to date
0
Altmetric
Review Article

Synthesis of the inosine 5′-monophosphate dehydrogenase (IMPDH) inhibitors

, , , &
Pages 550-563 | Received 02 Apr 2014, Accepted 31 Jul 2014, Published online: 08 Sep 2014

References

  • Pimkin M, Markham GD. Inosine 5′-monophosphate dehydrogenase. Adv Enzymol Relat Areas Mol Biol 2009;76:1–53
  • Mitsuhashi S, Takenaka J, Iwamori K, et al. Structure-activity relationships for inhibition of inosine monophosphate dehydrogenase and differentiation induction of K562 cells among the mycophenolic acid derivatives. Bioorg Med Chem Lett 2010;18:8106–11
  • Bentley R. Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem Rev 2000;100:3801–25
  • Jayaram HN, Dion RL, Glazer RI, et al. Initial studies on the mechanism of action of a new oncolytic thiazole nucleoside, 2-β-D-ribofuranosylthiazole-4-carboxamide (NSC 286193). Biochem Pharmacol 1982;31:2371–80
  • Manzoli L, Billi AM, Gilmour RS, et al. Phosphoinositide signaling in nuclei of Friend cells: tiazofurin down-regulates phospholipase C beta 1. Cancer Res 1995;55:2978–80
  • Vitale M, Zamai L, Falcieri E, et al. IMP dehydrogenase inhibitor, tiazofurin, induces apoptosis in K562 human erythroleukemia cells. Cytometry 1997;30:61–6
  • Olah E, Csokay B, Prajda N, et al. Molecular mechanisms in the antiproliferative action of taxol and tiazofurin. Anticancer Res 1996;16:2469–77
  • Weber G, Prajda N, Abonyi M, et al. Tiazofurin: molecular and clinical action. Anticancer Res 1996;16:3313–22
  • Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000;47:85–118
  • Natsumeda Y, Ohno S, Kawasaki H, et al. Two distinct cDNAs from human IMP dehydrogenase. J Biol Chem 1990;265:5292–5
  • Nagai M, Natsumeda Y, Weber G. Selective up-regulation of type II inosine 5′-monophosphate dehydrogenase messanger RNA expression in human leukemias. Cancer Res 1992;52:258–61
  • Konno Y, Natsumeda Y, Nagai M, et al. Expression of human IMP dehydrogenase types I and II in Escherichia coli and distribution in human normal lymphocytes and leukemic cell lines. J Biol Chem 1991;266:506–9
  • Gu JJ, Spychala J, Mitchell BS. Regulation of the human inosine monophosphate dehydrogenase type I gene. Utilization of alternative promoters. J Biol Chem 1997;272:4458–66
  • Nair V, Shu Q. Inosine monophosphate dehydrogenase (IMPDH) as a probe in antiviral drug discovery. Antiviral Chem Chemother 2007;18:245–58
  • Chong CR, Qian DZ, Pan F, et al. Identification of type I inosine monophosphate dehydrogenase as an antiangiogenic drug target. J Med Chem 2006;49:2677–80
  • Felczak K, Pankiewicz KW. Rehab of NAD(P)-dependent enzymes with NAD(P)-based inhibitors. Curr Med Chem 2011;18:1891–908
  • Chen L, Petrelli R, Felczak K, et al. Nicotinamide adenine dinucleotide based therapeutics. Curr Med Chem 2008;15:650–70
  • Hedstrom L. The dynamic determinants of reaction specificity in the IMPDH/GMPR family of (β/α)8 barrel enzymes. Crit Rev Biochem Mol Biol 2012;47:250–63
  • Dunkern T, Prabhu A, Kharkar PS, et al. Virtual and experimental high-throughput screening (HTS) in search of novel inosine 5′-monophosphate dehydrogenase II (IMPDH II) inhibitors. J Comput Aided Mol Des 2012;26:1277–92
  • Shu Q, Nair V. Inosine monophosphate dehydrogenase (IMPDH) as a target in drug discovery. Med Res Rev 2008;28:219–32
  • Barnes BJ, Izydore RA, Eakin AE, Hall IH. Mechanism of action of the antitumor agents 6-benzoyl-3,3-disubstituted-1,5-diazabicyclo[3.1.0]hexane-2,4-diones: potent inhibitors of human type II inosine 5′-monophosphate dehydrogenase. Int J Cancer 2001;94:275–81
  • Felczak K, Chen L, Wilson D, et al. Cofactor-type inhibitors of inosine monophosphate dehydrogenase via modular approach: targeting the pyrophosphate binding sub-domain. Bioorg Med Chem 2011;19:1594–605
  • Gish RG. Treating HCV with ribavirin analogues and ribavirin-like molecules purine riboside. J Antimicrob Chemother 2006;57:8–13
  • Wingard JR, Hess AD, Stuart RK, et al. Effect of several antiviral agents on human lymphocyte functions and marrow progenitor cell proliferation. Antimicrob Agents Chemother 1983;23:593–7
  • Sidwell RW, Robins RK, Hillyard IW. Ribavirin: an antiviral agent. Pharmacol Ther 1979;6:123–46
  • Wyde PR. Respiratory syncytial virus (RSV) disease and prospects for its control. Antiviral Res 1998;39:63–79
  • Fernandez-Larson R, Patterson JL. Ribavirin is an inhibitor of human immunodeficiency virus reverse transcriptase. Mol Pharmacol 1990;36:766–70
  • Main J, McCarron B, Thomas HC. Treatment of chronic viral hepatitis. Antiviral Chem Chemother 1998;9:449–60
  • Kawasaki Y. Mizoribine: a new approach in the treatment of renal disease. Clin Develop Immunol 2009;2009:681482 (1–10)
  • Sintchak MD, Nimmesgern E. The structure of inosine 5′-monophosphate dehydrogenase and the design of novel inhibitors. Immunopharmacology 2000;47:163–84
  • Petrelli R, Vita P, Torquati I, et al. Novel inhibitors of inosine monophospate dehydrogenase in patent literature of the last decade. Recent Pat Anticancer Drug Discov 2013;8:103–25
  • Hedstrom L. IMP dehydrogenase: structure, mechanism and inhibition. Chem Rev 2009;109:2903–28
  • Chen L, Wilson DJ, Xu Y, et al. Triazole-linked inhibitors of inosine monophosphate dehydrogenase from human and Mycobacterium tuberculosis. J Med Chem 2010;53:4768–78
  • Risal D, Strickler MD, Goldstein BM. Ternary complex of the human type II inosine monophosphate dehydrogenase with ribavirin monophosphate and C2-mycophenolic adenine dinucleotide. Protein Data Bank 2004. Available from: http://www.rcsb.org/pdb/explore.do?structureId=1NFB [last accessed 19 Aug 2014]
  • Cholewinski G, Malachowska-Ugarte M, Dzierzbicka K. The chemistry of mycophenolic acid – synthesis and modifications towards desired biological activity. Curr Med Chem 2010;17:1926–41
  • Nelson PH, Carr SF, Devens BH, et al. Structure-activity relationships for inhibition of inosine monophosphatedehydrogenase by nuclear variants of mycophenolic acid. J Med Chem 1996;39:4181–96
  • Yang N, Wang Q, Wang W, et al. The design, synthesis and in vitro immunosuppressive evaluation of novel isobenzofuran derivatives. Bioorg Med Chem Lett 2012;22:53–6
  • Malachowska-Ugarte M, Cholewinski G, Dzierzbicka K, Trzonkowski P. Synthesis and biological activity of novel mycophenolic acid conjugates containing nitro-acridine/acridone derivatives. Eur J Med Chem 2012;54:197–201
  • Iwaszkiewicz-Grzes D, Cholewinski G, Kot-Wasik A, et al. Synthesis and biological activity of mycophenolic acid-amino acid derivatives. Eur J Med Chem 2013;69:863–71
  • Felczak K, Vince R, Pankiewicz KW. NAD-based inhibitors with anticancer potential. Bioorg Med Chem Lett 2014;24:332–6
  • Chen L, Petrelli R, Olesiak M, et al. Bis(sulfonamide) isosters of mycophenolic adenine dinucleotide analogues: inhibition of inosine monophosphate dehydrogenase. Bioorg Med Chem 2008;16:7462–9
  • Sunohara K, Mitsuhashi S, Shigetomi K, Ubukata M. Discovery of N-(2,3,5-triazoyl)mycophenolic amide and mycophenolic epoxyketone as novel inhibitors of human IMPDH. Bioorg Med Chem Lett 2013;23:5140–4
  • Chen L, Wilson DJ, Xu Y, et al. Triazole-linked inhibitors of inosine monophosphate dehydrogenase from human and Mycobacterium tuberculosis. J Med Chem 2010;53:4768–78
  • Wu H, Pagadala J, Yates Ch R, et al. Synthesis and characterization of an anti-apoptotic immunosuppressive compound for improving the outcome of islet transplantation. Bioconjugate Chem 2013;24:2036–44
  • Chen Z, Zheng Z, Huang H, et al. Penicacids A-C, three new mycophenolic acid derivatives and immunosuppressive activities from the marine-derived fungus Penicillium sp. SOF07. Bioorg Med Chem Lett 2012;22:3332–5
  • Chen L, Wilson DJ, Labello NP, et al. Mycophenolic acid analogues with a modified metabolic profile. Bioorg Med Chem 2008;16:9340–5
  • El-Araby ME, Bernacki RJ, Makara GM, et al. Synthesis, molecular modeling, and evaluation of nonphenolic indole analogs of mycophenolic acid. Bioorg Med Chem 2004;12:2867–79
  • Chen L, Wilson D, Jayaram HN, Pankiewicz KW. Dual inhibitors of IMP-dehydrogenase and histone deacetylases for cancer treatment. J Med Chem 2007;50:6685–91
  • Looker AR, Littler BJ, Blythe TA, et al. Development and manufacture of the inosine monophosphate dehydrogenase inhibitor merimepodid, VX-497. Org Process Res Dev 2008;12:666–73
  • Jain J, Almquist SJ, Shlyakhter D, Harding MW. VX-497: a novel, selective IMPDH inhibitor and immunosuppressive agent. J Pharm Sci 2001;90:625–37
  • Herr RJ, Fairfax DJ, Meckler H, Wilson JD. Preparation of 5-(2-methoxy-4-nitrophenyl)oxazole: a key intermediate for the construction of VX-497. Org Process Res Dev 2002;6:677–81
  • Gu HH, Iwanowicz EJ, Guo J, et al. Novel diamide-based inhibitors of IMPDH. Bioorg Med Chem Lett 2002;12:1323–6
  • Dhar TGM, Shen Z, Guo J, et al. Discovery of N-[2-[2-[[3-methoxy-4-(5-oxazolyl)phenyl]-amino]-5-oxazolyl]phenyl]-N-methyl-4-morpholineacetamide as a novel and potent inhibitor of inosine monophosphate dehydrogenase with excellent in vivo activity. J Med Chem 2002;45:2127–30
  • Dhar TGM, Guo J, Shen Z, et al. A modified approach to 2-(N-aryl)-1,3-oxazoles: application to the synthesis of the IMPDH inhibitor BMS-337197 and analogues. Org Lett 2002;4:2091–3
  • Chen L, Petrelli R, Gao G, et al. Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylase based on a cinnamic hydroxamic acid core structure. Bioorg Med Chem 2010;18:5950–64
  • Watterson SH, Carlsen M, Dhar TGM, et al. Novel inhibitors of IMPDH: a highly potent and selective quinolone-based series. Bioorg Med Chem Lett 2003;13:543–6
  • Zhong Z-J, Zhang D-J, Peng Z-G, et al. Synthesis and antiviral activity of a novel class of (5-oxazolyl)phenyl amines. Eur J Med Chem 2013;69:32–43
  • Wittine K, Stepkowić Babić M, Makuc D, et al. The novel 1,2,4-triazole-3-carboxamide and imidazole derivatives of l-ascorbic acid: synthesis, anti-HCV and antitumor activity evaluations. Bioorg Med Chem 2012;20:3675–85
  • Nakanishi T, Kozuki Y, Eikyu Y, et al. In vitro and in vivo characterization of AS2643361, a novel and highly potent inosine 5′-monophosphate dehydrogenase inhibitor. Eur J Pharm 2012;674:58–63
  • Watterson SH, Chen P, Zhao Y, et al. Acridone-based inhibitors of inosine 5′-monophosphate dehydrogenase: discovery and SAR leading to the identification of N-(2-(6-(4-ethylpiperazin-1-yl)pyridin-3-yl)propan-2-yl)-2-fluoro-9-oxo-9,10-dihydroacridine-3-carboxamide (BMS-566419). J Med Chem 2007;50:3730–42

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.