392
Views
11
CrossRef citations to date
0
Altmetric
Original Article

The Voice Track multiband single-channel modified Wiener-filter noise reduction system for cochlear implants: patients' outcomes and subjective appraisal

, , , , , , , & show all
Pages 431-438 | Received 09 Oct 2015, Accepted 25 Mar 2016, Published online: 25 Apr 2016

References

  • Arslan L.M. 2006. Modified wiener filtering. Signal Process, 86, 267–272.
  • Başkent D., Eiler C.L., & Edwards B. 2007. Using genetic algorithms with subjective input from human subjects: implications for fitting hearing aids and cochlear implants. Ear Hear, 28, 370–380.
  • Bierer J.A. 2010. Probing the electrode-neuron interface with focused cochlear implant stimulation. Trends Amplif, 14, 84–95.
  • Bierer J.A., Bierer S.M., & Middlebrooks J.C. 2010. Partial tripolar cochlear implant stimulation: Spread of excitation and forward masking in the inferior colliculus. Hear Res, 270, 134–142.
  • Bierer J.A., Faulkner K.F., & Tremblay K.L. 2011. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration. Ear Hear, 32, 436–444.
  • Blamey P., Artieres F., Başkent D., Bergeron F., Beynon A. et al. 2013. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients. Audiol Neurootol, 18, 36–47.
  • Borger D., Lina-Granade G., Verneyre S., Thai Van H., Saai S. et al. 2015. One-year follow up of auditory performance in post-lingually deafened adults implanted with the Neurelec Digisonic® SP/Saphyr® Neo cochlear implant system. Audiol Res, 5, 76–79.
  • Bozorg-Grayeli A., Guevara N., Bébéar J.P., Ardoint M., Saaï S. et al. 2015. Clinical evaluation of the xDP output compression strategy for cochlear implants. Eur Arch Oto-rhino-Laryngol, Oct 17, doi: 10.1007/s00405-015-3796-1.
  • Cooper W.B., Tobey E., & Loizou P.C. 2008. Music perception by cochlear implant and normal hearing listeners as measured by the Montreal battery for evaluation of amusia. Ear Hear, 29, 618–626.
  • Crew J.D., Galvin J.J. III, & Fu Q.J. 2012. Channel interaction limits melodic pitch perception in simulated cochlear implants. J Acoust Soc Am, 132, EL429–EL435.
  • Fink N., Furst M., & Muchnik C. 2012. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm. J Acoust Soc Am, 132, 1718–1731.
  • Firszt J.B., Holden L.K., Skinner M.W., Tobey E.A., Peterson A. et al. 2004. Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems. Ear Hear, 25, 375–387.
  • Friesen L.M., Shannon R.V., Baskent D., & Wang X. 2001. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am, 110, 1150–1163.
  • Gaylor J.M., Raman G., Chung M., Lee J., Rao M. et al. 2013. Cochlear implantation in adults: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg, 139, 265–272.
  • Hu Y., & Loizou P.C. 2007. A comparative intelligibility study of single-microphone noise reduction algorithms. J Acoust Soc Am, 122, 1777.
  • Kokkinakis K., Azimi B., Hu Y., & Friedland D.R. 2012. Single and multiple microphone noise reduction strategies in cochlear implants. Trends Amplif, 16, 102–116.
  • Koning R., Madhu N., & Wouters J. 2015. Ideal time-frequency masking algorithms lead to different speech intelligibility and quality in normal-hearing and cochlear implant listeners. IEEE Trans Biomed Eng, 62, 331–341.
  • Li J., Yang L., Zhang J., Yan Y., Hu Y. et al. 2011. Comparative intelligibility investigation of single-channel noise-reduction algorithms for Chinese, Japanese, and English. J Acoust Soc Am, 129, 3291–3301.
  • Madhu N., Spriet A., Jansen S., Koning R., & Wouters J. 2013. The potential for speech intelligibility improvement using the ideal binary mask and the ideal Wiener filter in single channel noise reduction systems: application to auditory prostheses. Audio Speech Lang Process IEEE Trans, 21, 63–72.
  • Pals C., Sarampalis A., & Baskent D. 2013. Listening effort with cochlear implant simulations. J Speech Lang Hear Res, 56, 1075–1084.
  • Rădulescu L., Cozma S., Niemczyk C., Guevara N., Gahide I. et al. 2013. Multicenter evaluation of Neurelec Digisonic® SP cochlear implant reliability. Eur Arch oto-rhino-Laryngol, 270, 1507–1512.
  • Ruckenstein, M. J. (ed.) 2012. Cochlear implants and other implantable hearing devices. San Diego, California, USA: Plural Publishing.
  • Shannon R.V., Zeng F.G., Kamath V., Wygonski J., & Ekelid M. 1995. Speech recognition with primarily temporal cues. Science, 270, 303–304.
  • Shannon R.V., Fu Q.J., & Galvin J. 3rd. 2004. The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Otolaryngol Suppl, 552, 50–54.
  • Spahr A.J., Litvak L.M., Dorman M.F., Bohanan A.R., & Mishra L.N. 2008. Simulating the effects of spread of electric excitation on musical tuning and melody identification with a cochlear implant. J Speech Lang Hear Res, 51, 1599–1606.
  • Studebaker G.A., McDaniel D.M., & Sherbecoe R.L. 1995. Evaluating relative speech recognition performance using the proficiency factor and rationalized arcsine differences. J Am Acad Audiol, 6, 173–182.
  • Verschuur C., Lutman M., & Wahat N.H. 2006. Evaluation of a non-linear spectral subtraction noise suppression scheme in cochlear implant users. Cochlear Implants Int, 7, 193–196.
  • Winn M.B., Edwards J.R., & Litovsky R.Y. 2015. The Impact of Auditory Spectral Resolution on Listening Effort Revealed by Pupil Dilation. Ear Hear, 36, e153–e165.
  • Yang L.P., & Fu Q.J. 2005. Spectral subtraction-based speech enhancement for cochlear implant patients in background noise. J Acoust Soc Am, 117, 1001–1004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.