15
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Conception of a Bioelectromagnetic Signal System via the Collagen Fibril Network; Biochemical Conclusions and Underlying Coherent Mechanism. I. Solid State Effects and Hierarchical Bioelectrical Regulation

Pages 149-161 | Published online: 05 Aug 2009

References

  • Regling G. Zur Pathophysiologie der Arthrose. Eine theoretische und experimentelle Studie unter besonderer Berücksichtigung bioelektrischer Regelmechanismen in der Knorpelmatrix, Habilitation. Humboldt-Universität, Berlin 1988
  • Grodzinsky A. J., Lipshitz H., Glimcher M. J. Electromechanical properties of articular cartilage during compression and stress relaxation. Nature 1978; 275: 448–450
  • Becker R. O., Bassett C. A.L., Bachman C. H. Bioelectrical factors controlling bone structure. Bone Biodynamics, H. Frost. Little, Brown. 1964; 209–232
  • Vogel G., Angermann H. Taschenbuch der Biologie. Gustav Fischer Verlag, Jena 1979; Band I
  • Regling G., Rückmann H.-I., Buntrock P. The supramolecular organization of the cartilage matrix–a model for bioelectrical information transfer between bio-polymers in vivo. XIth Symposium on Biophysics and Chemistry. Erfurt 1986, Sept. 22–27
  • Regling G., Rückmann H.-I. An integrative concept for an electrophysiological signal system in the connective tissue matrix. The native collagen fibril as biosensor and signal conduction structure between nerve and cell as well as in the intercellular matrix, and a discussion of the underlying mechanisms. Wolff's Law and Connective Tissue Regulation. G. Regling, de Gruyter, Berlin 1993; 171–192
  • Rückmann H.-I., Regling G., Buntrock P. The supramolecular organization of the cartilage matrix–a model of bioelectric information transfer in biopolymers. Studia Biophys. 1987; 119: 141–145
  • Regling G., Rückmann H.-I. The native collagen fibril–biosensor and signal conductor of the connective tissues. A new concept for a biological understanding of the regulation of connective tissues. Bioelectrochem. Bioenerg. 1989; 22: 241–254
  • Grodzinsky A. J. Electromechanical and physicochemical properties of connective tissue. CRC Crit. Rev. Biomed. Eng. 1983; 9: 133–199
  • Regling G. Regulationsebenen und Krankheitsdynamik des Arthrose-Gelenkes. 1. Arthrose-Begriff und biomechanische Funktionsbeanspruchung. 2. Bioelektrische Mechanismen und Synovia-Ruhe-pO2. Z Árztl. Fortb. 1994; 11: 903–916
  • Dekel S., Weissman S. L. Joint changes after overruse and peak overloading of rabbit knee in vivo. Acta Orthop. Scand. 1978; 49: 519–528
  • Regling G., Zippel H., Rückmann H.-I., Pieper H.-J., Lindenhayn K., Warzok D., Buntrock P. Bioelektrische Messungen für ein integratives Konzept der Morphogenese und Leisrungsadaptation mechanisch beanspruchter Bindegewebe. 1. Bioelektrische Deformationspotentiale an Gelenkknorpel in vitro. Z. Klin. Med. 1988; 43: 1771–1777
  • Shamos M. H., Lavine L. S. Piezoelectricity as a fundamental property of biological tissues. Nature 1967; 21: 267–269
  • Cope F. W. The solid-state physics of electron and ion transport in biology. Adv. Biol. Med. Phys. 1970; 13: 1–42
  • Pischinger A. Das System der Grundregulation. Haug-Verlag, Heidelberg 1980
  • Heine H., Schaeg G. Zur Ultrastruktur der Beziehungen zwischen terminalen vegetativen Nervenfasern, der Grundsubstanz und Zelloberflächendifferenzierungen. Anat. Anz. 1979; 141: 66–77
  • Thomas F. Regelungsvorgänge in Medizin und Technik–ein Vergleich. Ganzheitsmedizin. Zschr. Regulationsmed. 1989; 2: 13–31
  • Hanesh U., Heppelmann B., Messlinger K., Schmidt R. F. Nociception in normal and arthritic joints. Structural and functional aspects. Hyperalgesia and Allodynia, W. D. Willis. Raven Press, New York 1992; 81–106
  • Poole C. A., Flint M. H., Beaumont B. W. Chondrons in cartilage: ultrastructural analysis of the pericellular microenvironment in adult human articular cartilages. J. Orthopaed. Res. 1987; 5: 509–522
  • Kleinman H. K., Klebe R. J., Martin G. R. Role of collagenous matrices in the adhesion and growth of cells. J. Cell Biol. 1981; 88: 473–485
  • Hameroff S. R. Coherence in the cytoskeleton: implications for biological information processing. Biological Coherence and Response to External Stimuli, H. Fröhlich. Springer, New York 1988; 242–265
  • Athenstaedt H. Permanent longitudinal electrical polarization and pyroelectric behaviour of collagenous and nervous tissue in man and other vertebrates. Nature 1970; 228: 830–834
  • Roth V., Mow V. C. The intrinsic tensile behaviour of the matrix of bovine articular cartilage and its variation with age. J. Bone Joint Surg. [Am] 1980; 62A: 1102–1117
  • Benninghoff A. Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Zschr. Zellforsch. 1925; 76: 43
  • Hay E. D. Extracellular matrix. J. Cell. Biol. 1981; 91: 205s–223s
  • Scott J. E., Orford C. R., Hughes E. W. Dermatan-sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region. Biochem. J. 1981; 195: 573–581
  • Scott J. E. Proteoglycan-fibrillar collagen interactions. Biochem. J. 1988; 252: 313–323
  • Mòdis L. The molecular structure of the interfibrillar matrix in connective tissue. Acta Biol. Acad. Sci. Hung. 1978; 29: 197–226
  • Módis L., Ádány R., Lakatos I. Polarisationsoptische Analyse der menschlichen embryonalen Knorpelmatrix. Acta Histochem. Suppl. 1982; 26: 305–312
  • Dunham J. Induced birefrigence for elucidating altered orientation of glycosaminoglycans in the development of canine osteoarthritis, International Symposium on Histochemistry. Debrecen 1985, July 8–10
  • Katz E. P., Li S.-T. Structure and function of bone collagen fibrils. J. Mol. Biol. 1973; 80: 1–15
  • Fukada E. Piezoelectric properties of biological macromolecules. Adv. Biophysics 1974; 6: 121–155
  • Becker R. O. The basic biological data transmission and control system influenced by electrical forces. Electrically Mediated Growth Mechanisms in Living Systems, A. R. Liboff, R. A. Rinaldi, 1974; 238: 236–241, Ann. N.Y. Acad. Sci.
  • Wolff J. Das Gesetz der Transformation der Knochen. August Hirschwald, Berlin 1892
  • Athenstaedt H., Claussen H., Schaper D. Epidermis of human skin: pyroelectric and piezoelectric sensor layer. Science 1982; 216: 1018–1020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.