73
Views
2
CrossRef citations to date
0
Altmetric
Research Article

II. Model Building: An Electrical Theory of Control of Growth and Development in Animals, Prompted by Studies of Exogenous Magnetic Field Effects (Paper I), and Evidence of DNA Current Conduction, In Vitro

Pages 283-309 | Published online: 14 Dec 2009

References

  • Altan-Bonnet, G., Libchaber, A., Krichevsky, O. (2003). Bubble dynamics in double-stranded DNA. Phys. Rev. Lett. 90:138101-1–138101-4.
  • Aparicio, T., Ibarra, A., Mendez, J. (2006). Cdc45-MCM-GINS, a new power player for DNA replication. Cell Div. 1:18–22.
  • Barnett, R. N., Cleveland, C. L., Joy, A., et al. (2001). Charge migration in DNA: Ion-gated transport. Science 294:567–571.
  • Barton, J. K. (1998). DNA-mediated electron transfer: Chemistry at a distance. Pure Appl. Chem. 70:873–879.
  • Becker, N. A., Kelm, Jr., R. J., Vrana, J. A., et al. (2000). Altered sensitivity to single-strand-specific reagents associated with the genomic vascular smooth muscle alpha-actin promoter during myofibroblast differentiation. J. Biol. Chem. 275:15384–15391.
  • Bell, S. P. (2002). The origin recognition complex: From simple origins to complex functions. Genes Dev. 16:659–672.
  • Benham, C. J. (1992). Energetics of the strand separation transition in superhelical DNA. J. Mol. Biol. 225:835–847.
  • Benham, C. J. (1996). Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions. J. Mol. Biol. 255:425–434.
  • Benham, C., Kohwi-Shigematsu, T., Bode, J. (1997). Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions. J. Mol. Biol. 274:181–196.
  • Berridge, M. J. (1995). Calcium signaling and cell proliferation. Bioessays 17:491–500.
  • Blank, M., Goodman, R. (1997). Do electromagnetic fields interact directly with DNA? Bioelectromagnetics 18:111–115.
  • Blank, M., Goodman, R. (2004). Initial interactions in electromagnetic field-induced biosynthesis. J. Cell. Physiol. 199:359–363.
  • Bode, J., Goetze, S., Heng, H., et al. (2003). From DNA structure to gene expression: Mediators of nuclear compartmentalization and dynamics. Chromosome Res. 11:435–445.
  • Brahms, S., Nakasu, S., Kikuchi, A., Brahms, J. G. (1989). Structural changes in positively and negatively supercoiled DNA. Eur. J. Biochem. 184:297–303.
  • Chan, S. S., Breslauer, K. J., Hogan, M. E., et al. (1990). Physical studies of DNA pre-melting equilibria in duplexes with and without homo dA.dT tracts: Correlations with DNA bending. Biochemistry 29:6161–6171.
  • Chan, S. S., Austin, R. H., Mukerji, I., Spiro, T. G. (1997). Temperature-dependent ultraviolet resonance Raman spectroscopy of the pre-melting state of dA.dT DNA. Biophys. J. 72:1512–1520.
  • Cohen, H., Nogues, C., Naaman, R., Porath, D. (2005). Direct measurement of electrical transport through DNA molecules. Proc. Nat. Acad. Sci. U.S.A. 102:11589–11593.
  • Davis-Smyth, T., Duncan, R. C., Zheng, T., et al. (1996). The far upstream element-binding proteins comprise an ancient family of single-strand DNA-binding transactivators. J. Biol. Chem. 49:31679–31687.
  • Desveaux, D., Despres, C., Joyeux, A., et al. (2000). PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato. Plant Cell 12:1477–1490.
  • Delaney, S., Barton, J. K. (2003). Long-range DNA charge transport. J. Org. Chem. 68:6475–6483.
  • Dombeck, D. A., Blanchard-Desce, M., Webb, W. W. (2004). Optical recording of action potentials with second-harmonic generation microscopy. J. Neurosci. 24:999–1003.
  • Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev. 82:47–95.
  • Elson, E. (2007). Developmental control in animals and a biological role for DNA charge transfer. Progr. Biophys. Mol. Biol. 95:1–15.
  • Essevaz-Roulet, B., Bockelmann, U., Heslot, F. (1997). Mechanical separation of the complementary strands of DNA. Proc. Natl. Acad. Sci. U.S.A. 94:11935–11940.
  • Fink, H. W., Schonenberger, C. (1999). Electrical conduction through DNA molecules. Nature 398:407–410.
  • Ghosh, M., Kemp, M., Liu, G., et al. (2006). Differential binding of replication proteins across the human c-myc replicator. Mol. Cell Biol. 26:270–283.
  • Giese, B. (2002). Long-distance electron transfer through DNA. Ann. Rev. Biochem. 71:51–70.
  • Gilland, E., Miller, A. L., Karplus, E., et al. (1999). Imaging of multicellular large-scale rhythmic zebrafish gastrulation. Proc. Natl. Acad. Sci. U.S.A. 96:157–161.
  • Goldbeter, A. (1996). Biochemical Oscillations and Cellular Rhythms. Cambride: Cambridge University Press.
  • Gonze, D., Halloy, J., Goldbeter, A. (2002). Robustness of circadian rhythms with respect to molecular noise. Proc. Natl. Acad. Sci. U.S.A. 99:663–678.
  • Heng, H. H., Goetze, S., Ye, C. J., et al. (2004). Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. J. Cell Sci. 117:999–1008.
  • Herrman, H., Foisner, R. (2003). Intermediate filaments: novel assembly models and exciting new functions for nuclear lamins. Cell. Mol. Life Sci. 60:1607–1612.
  • Hutchison, C. J., Bridger, J. M., Cox, L. S., Kill, I. R. (1994). Weaving a pattern from disparate threads: Lamin function in nuclear assembly and DNA replication. J. Cell Sci. 107:3259–3269.
  • Ivanov, V., Zeng, T., Zocchi, G. (2004). Statistical mechanics of base stacking and pairing in DNA melting. Phys. Rev. E Statist. Nonlin. Soft Matter Phys. 70:051907.
  • Jackson, J. D. (1962). Classical Electrodynamics. New York: John Wiley & Sons Inc.
  • Kahl, C. R., Means, A. R. (2003). Regulation of cell cycle progression by calcium/calmodulindependent pathways. Endocr. Rev. 24:719–736.
  • Kelm, Jr., R. J., Cogan, J. G., Elder, P. K., et al. (1999). Molecular interactions between single-stranded DNA-binding proteins associated with an essential MCAT element in the mouse smooth muscle alpha-actin promoter. J. Biol. Chem. 274:14238–14245.
  • Kelm, Jr., R. J., Sun, S., Strauch, A. R., Getz, M. J. (1996). Repression of transcriptional enhancer factor-1 and activator protein-1-dependent enhancer activity by vascular actin single-stranded DNA binding factor 2. J. Biol. Chem. 271:24278–24285.
  • Laskey, R., Madine, M. (2003). A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep. 4:26–30.
  • Leno, G. H. (1992). Regulation of DNA replication by the nuclear envelope. Semin. Cell Biol. 3:237–243.
  • Lipniacki, T. (2001). Thermodynamics of local DNA openings. Phys. Rev. E. Statist. Nonlin. Soft Matter Phys. 64:051919.
  • Liu, G., Malott, M., Leffak, M. (2003). Multiple functional elements comprise a mammalian chromosomal replicator. Mol. Cell. Biol. 23:1832–1842.
  • Ma, H., Sasmarabandu, J., Devdhar, R. S., et al. (1998). Spatial and temporal dynamics of DNA replication sites in mammalian cells. J. Cell Biol. 143:1415–1425.
  • MacAlpine, D. M., Bell, S. P. (2005). A genomic view of eukaryotic DNA replication. Chromosome Res. 13:309–326.
  • Marnett, L. J., Riggins, J. N., West, J. D. (2003). Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J. Clin. Invest. 111:583–593.
  • Mattout-Drubezki, A., Gruenbaum, Y. (2003). Dynamic interactions of nuclear lamina proteins with chromatin and transcriptional machinery. Cell. Mol. Life Sci. 60:2053–2063.
  • Mazzanti, M., Bustamante, J. O., Oberleithner, H. (2001). Electrical dimension of the nuclear envelope. Physiol. Rev. 81:1–19.
  • Matzke, A. J. M., Matzke, M. A. (1991). The electrical properties of the nuclear envelope and their possible role in the regulation of eukaryotic gene expression. Bioelectrochem. Bioenerg. 25:357–370.
  • Mei, W. N., Kohli, M., Prohofsky, E. W., Van Zandt, L. L. (1981). Accoustic modes and nonbonded interactions of the double helix. Biopolymers 20:833–852.
  • Mendez, J., Stillman, B. (2003). Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays 25:1158–1167.
  • Movileanu, L., Benevides, J. M., Thomas, Jr., G. J. (2002). Temperature dependence of the Raman spectrum of DNA, II Raman signatures of pre-melting and melting transitions of poly (dA).poly(dT) and comparison with poly(dA-dT).poly(dA-dT). Biopolymers 63:181–194.
  • Nuccitelli, R. (1992). Endogenous Ionic Currents and DC electric fields in multicellular animal tissues. Bioelectromagnetics Supplement 1:147–157.
  • Panning, M. M., Gilbert, D. M. (2005). Spatio-temporal organization of DNA replication in murine embryonic stem, primary, and immortalized cells. J. Cell. Biochem. 95:74–82.
  • Peyrard, M., Bishop, A. R. (1989). Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62:2755–2758.
  • Phillips, B. W., Sharma, R., Leco, P. A., Edwards, D. R. (1999). A sequence-selective single-strand DNA-binding protein regulates basal transcription of the murine tissue inhibitor of metalloproteinases-1 (Timp-1) gene. J. Biol. Chem. 274:22197–22207.
  • Pipkin, J. L., Hinson, W. G., Young, J. F., et al. (1999). Induction of stress proteins by electromagnetic fields in cultured HL-60 cells. Bioelectromagnetics 20:347–357.
  • Porath, D., Bezryadin, A., de Vries, S., Dekker, C. (2000). Direct measurement of electrical transport through DNA molecules. Nature 403:635–638.
  • Prohofsky, E. (1995). Statistical Mechanics and Stability of Macromolecules. Cambridge: Cambridge University Press.
  • Saxena, V. K., Van Zandt, L. L. (1992). Plasmon interpretation of 25 cm-1 mode in DNA. J. Biomol. Struct. Dyn. 10:227–237.
  • Schroedinger, E. (1967). What is Life? Cambridge (first published 1944): Cambridge University Press.
  • Schultz, R. M. (2005). From egg to embryo: a peripatetic journey. Reproduction 130:825–828.
  • Shao, F., Augustyn, K., Barton, J. K. (2005). Sequence dependence of charge transport through DNA domains. J. Amer. Chem. Soc. 127:17445–17452.
  • Singh, N., Singh, Y. (2003). Statistical mechanics of thermal denaturation of DNA oligomers. Pramana 61:345–352.
  • Tyson, J. J., Novak, B. (2001). Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210:249–263.
  • Urabe, H., Tominaga, Y., Kubota, K. (1983). Experimental evidence of collective vibrations in DNA double helix (Raman spectroscopy). J. Chem. Phys. 78:5937–5939.
  • Valko, M., Leibfritz, D., Moncol, J., et al. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. 39:44–84.
  • von Hippel, P. H., Delagoutte, E. (2003). Macromolecular complexes that unwind nucleic acids. Bioessays 25:1168–1177.
  • Walter, J., Newport, J. (2000). Initiation of eukaryotic DNA replication: Origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol. Cell. 5:617–627.
  • Wan, C., Fiebig, T., Schiemann, O., et al. (2000). Femtosecond direct observation of charge transfer between bases in DNA. Proc. Natl. Acad. Sci. U.S.A. 97:14052–14055.
  • West, A. G., Fraser, P. (2005). Remote control of gene transcription. Hum. Mol. Genet. 14:R101–R111.
  • Wikswo, Jr., J. P., van Egeraat, J. M. (1991). Cellular magnetic fields; fundamental and applied measurements on nerve axons, peripheral nerve buncles, and skeletal muscle. J. Clin. Neurophysiol. 8:170–188.
  • Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. Boca Raton, FL: Chapman and Hall/CRC Press.
  • Zochowski, M., Wachowiak, M., Falk, C. X., et al. (2000). Imaging membrane potential with voltage-sensitive dyes. Biol. Bull. 198:1–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.