34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Measurement of Intrinsic Physiological Membrane Noise in Cultured Living Cells

&
Pages 36-51 | Published online: 01 Jun 2010

References

  • Adey, W. R. (1992). Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems. Norden, B., Ramel, K., Eds. Oxford: Oxford University Press.
  • Araujo, O. Q. F., et al. (2004). Electrical stimulation of Saccharomyces Cerevisiae cultures Braz. J. Microbiol. 35:97–103.
  • Axmacher, N., Miles, R. (2004). Intrinsic cellular currents and the temporal precision of EPSP- action potential coupling in CA1 pyramidal cells. J. Physiol. 555:713–716.
  • Bezrukov, S. M., Kasianowicz, J. J. (1993). Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Phys. Rev. Lett. 70:2352–2355.
  • Bezrukov, S. M., Vodyanoy, I. (1997). Stochastic resonance in non-dynamical systems without response thresholds. Nature 385:319–321.
  • Blackman, C. F., Benane, S. G., House, D. E. (1985). Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6:327–332.
  • Bukhari, M. H. S., Shah, Z. H., Miller, Jr., J. H. (2009). A sensitive trans-impedance amplifier for ultra-low current measurements in biophysics and electrophysiology. Pak. J. Sci. Ind. Res. 52:91–99.
  • Bullock, T. H. (1997). Signals and signs in the nervous system: the dynamic anatomy of electrical activity is probably information-rich. Proc. Nat. Acad. Sci. USA 94:1–6.
  • Cole, K. S. (1968). Membranes, Ions and Impulses. Berkeley, Los Angeles:University of California Press.
  • DeFelice, L. J. (1981). Introduction to Membrane Noise. New York:Plenum.
  • Dodge, Jr., F. A., Knight, B. W., Toyoda, J. (1968). Voltage noise in Limulus visual cells. Science 160:88–90.
  • Finkelstein, E. I., et al. (2007). Electric field-induced polarization of charged cell surface proteins does not determine the direction of galvanotaxis. Cell Motil. Cytoskel. 64:833–846.
  • French, A. S., Korenberg, M. J. (1989). A nonlinear cascade model for action potential encoding in an insect sensory neuron. Biophys. J. 55:655–661.
  • Galvanovskis, J., Sandblom, J. (1997). Amplification of electromagnetic signals by ion channels Biophys. J. 73:3056–3065.
  • Glasgow, S. D., Chapman, C. A. (2007). Local generation of theta-frequency EEG activity in the parasubiculum. J. Neurophysiol 97:3868–3870.
  • Gowrishankar, T. R., Weaver, J. C. (2003). An approach to electrical modeling of single and multiple cells. Proc. Nat. Acad. Sci. 100:3203–3208.
  • Grosse, C., Schwan, H. P. (1992). Cellular membrane potentials induced by alternating fields. Biophys. J. 63:1632–1642.
  • Güler, G., Seyhan, N., Aricioglu, A. (2006). Effects of static and 50 Hz alternating electric fields on superoxide dismutase activity and TBARS levels in guinea pigs. Gen. Physiol. Biophys. 25:177–193.
  • Hamill, O. P., Marty, A., Neher, E., et al. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv. Eur. J. Physiol. 391:85–100.
  • Hodgkin, A. L., Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544.
  • Johnson, J. (1928). Thermal agitation of electricity in conductors. Phys. Rev. 32:97–109.
  • Liburdy, R. P. (1995). Cellular studies and interaction mechanisms of extremely low frequency fields. Radio Sci. 30:179.
  • Lillywhite, P. G. (1981). Multiplicative intrinsic noise and the limits to visual performance. Vision Res. 21:291–296.
  • Linares-Barranco, B., Serrano-Gotarredona, T. (2003). On the design and characterization of femtoampere current-mode circuits. IEEE J. Solid-State Circuits 38:1353–1363.
  • McLeod, K. J., Rubin, C. T., Donahue, H. J., Guilak, F. (1992) On the mechanism of extremely low frequency (ELF) electric field interactions with living tissue. Proc. 1992 Eighteenth IEEE Ann. Northeast Bioeng. Conf. pp. 65–66.
  • Miller, Jr., J. H., et al. (2005). Electromagnetic probes of molecular motors in the electron transport chains of mitochondria and chloroplasts. J. de Physique IV 131:363–366.
  • Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Phys. Rev. 32:110–113.
  • Sanabria, H., et al. (2006). Impedance spectroscopy of -ß tubulin heterodimer suspensions. Biophy. J. 90:4644–4650.
  • Sanabria, H., Miller, Jr., J. (2006). Relaxation processes due to the electrode-electrolyte interface in ionic solutions Phys. Rev. E. 74:05105–05114.
  • Schwan, H. P. (1957). Electrical properties of tissues and cell suspensions. Adv. Biol. Med. Phys. 5:147–209.
  • Seaman, Jr., R. L., Ayer, R. K., DeHaan, R. L. (1982). Changes in cardiac-cell membrane noise during microwave exposure. Micro. Symp. Digest 82:436–437.
  • Sigworth, F. J. (1983). Fitting and statistical analysis of single cell voltage noise fluctuations. Biophys. J. 47:709–720.
  • Sperelakis, N. (2001). Cell Physiology Sourcebook: A Molecular Approach. San Diego: Academic Press.
  • Woodward, A. M., Kell, D. B. (1990). On the nonlinear dielectric properties of biological systems Saccharomyces cerevisiae. Bioelectrochem. Bioenerg. 24:3–100.
  • Woodward, A. M., Kell, D. B. (1991). Confirmation by using mutant strains that the membrane-bound H+-ATPase is the major source of non-linear dielectricity in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 84:91–96.
  • Wright, M. C., Philippsen, P. (1991). Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene 109:99–105.
  • Wu, Y. C., Koch, W. F. (1991). Absolute determination of electrolytic conductivity for primary standard KCl solutions from 0 to 50°C. J. Solution Chem. 20:391–401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.