106
Views
4
CrossRef citations to date
0
Altmetric
Articles

Endogenous electromagnetic fields in plant leaves: a new hypothesis for vascular pattern formation

Pages 93-107 | Published online: 18 May 2011

References

  • Aloni R., Schwalm K., Langhans M., Ullrich C.. Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta. 2003; 216:841–853.
  • Arani R., Bono I., Del Giudice E., Preparata G.. QED coherence and the thermodynamics of water. Int. J. Mod. Phys. B. 1995; 9:1813–1841.
  • Beloussov L., Grabovsky V.. Morphomechanics:goals, basic experiments and models. Int. J. Dev. Biol.. 2006; 50:81–92.
  • Brizhik L., Del Giudice E., Jorgensen S., Marchettini N., Tiezzi E.. The role of electromagnetic potentials in the evolutionary dynamics of ecosystems. Ecol. Model.. 2009; 220:1865–1869.
  • Brizhik L., Del Giudice E., Popp F., Maric-Oehler W., Schlebusch K.. On the dynamics of self-organization in living organisms. Electromagn. Biol. Med.. 2009; 28:28–40.
  • Brizhik L., Eremko A.. Nonlinear model of the origin of endogenous alternating electromagnetic fields and selfregulation of metabolic processes in biosystems. Electromagn. Biol. Med.. 2003; 22:31–39.
  • Burr H.. Diurnal potentials in the maple tree. Yale J. Biol. Med.. 1945; 17:727–734.
  • Burr H.. Tree potentials. Yale J. Biol. Med.. 1947; 19:311–318.
  • Cifra M., Pokorny J., Jelinek F., Hasek J.. 2008. Measurement of yeast cell electrical oscillations around 1 kHzPIERS Proc.Cambridge, MA 780–785.
  • Cifra M., Pokorny J., Jelinek F., Kucera O.. 2009. Vibrations of electrically polar structures in biosystems give rise to electromagnetic field: theories and experimentsPIERS ProcMoscow, Russia. 138–142.
  • Collini E., Scholes G.. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science. 2009; 323:369–373.
  • Del Giudice E., De Ninno A., Fleischmann M., Mengoli G., Milani M., Talpo G., Vitiello G.. Coherent quantum electrodynamics in living matter. Electromagn. Biol. Med.. 2005; 24:199–210.
  • Del Giudice E., Dogila S., Milani M., Smith C., Vitiello G.. Magnetic flux quantization and Josephson behaviour in living systems. Physica Scripta. 1989; 40:786–791.
  • Del Giudice E., Doglia S., Milani M.. Quantum field theoretical approach to the collective behaviour of biological systems. Nuc. Phys. B. 1985; B251:375–400.
  • Del Giudice E., Doglia S., Milani M.. Electromagnetic field and spontaneous symmetry breaking in biological matter. Nuc. Phys. B. 1986; B275:185–199.
  • Del Giudice E., Pulselli R., Tiezzi E.. Thermodynamics of irreversible processes and quantum field theory: an interplay for the understanding of ecosystem dynamics. Ecol. Mod.. 2009; 220:1874–1879.
  • Dustin P.. 1978. Microtubules. Berlin: Springer-Verlag.
  • El-Rayes M., Ulaby F.. Microwave dielectric spectrum of vegetation - part I: experimental observations. IEEE Trans. Geosci. Remote Sens.. 1987; GE-25:541–549.
  • Engel G., Calhoun T., Read E., Ahn T., Mancal T., Cheng Y., Blankenship R., Flemming G.. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature. 2007; 446:782–786.
  • Fedorov V., Popova S., Pisarchik A.. Dynamic effects of submillimeter wave radiation on biological objects of various levels of organization. Int. J. Infared Millimeter Waves. 2003; 24:1235–1254.
  • Fenske K., Misra D.. Dielectric materials at microwave frequencies. Appl. Micro. Wireless. 2000; 12:92–100.
  • Feugier F., Iwasa Y.. How canalization can make loops: A new model of reticulated leaf vascular pattern formation. J. Theor. Biol.. 2006; 243:235–244.
  • Feugier F., Mochizuki A., Iwasa Y.. Self-organization of the vascular system in plant leaves: Inter-dependent dynamics of auxin flux and carrier proteins. J. Theor. Biol.. 2005; 236:366–375.
  • Frohlich H.. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A. 1968; 26A:402–403.
  • Frohlich H.. Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem.. 1968; 2:641–649.
  • Frohlich H.. Evidence for bose condensation-like excitation of coherent modes in biological systems. Phys. Lett. A. 1975; 51A:21–22.
  • Fromm J., Lautner S.. Electrical signals and their physiological significance in plants. Plant Cell Environ.. 2007; 30:249–257.
  • Galweiler L., Guan C., Muller A., Wiseman E., Mendgen K.. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science. 1998; 282:2226–2230.
  • Gebbie H., Miller P.. Nonthermal microwave emission from frog muscles. Int. J. Infared Millimeter Waves. 1997; 18:951–957.
  • Gilbert S.. 2006. Developmental Biology. New York: Sinauer Associates.
  • Haken H., Wunderlin A., Yigitbasi S.. An introduction to synergetics. Open Syst. Inform. Dynam.. 1995; 3:97–130.
  • Hammeroff, S. (2010). Microtubule super-lattices, Frohlich coherence and ORch OR (Reply to Reimers et al., PNAS). from www.quantumconsciousness.org/PNAS.html..
  • Jean R.. Phyllotaxis: The status of the field. Mathemat. Biosci.. 1996; 127:181–206.
  • Jerman I., Krasovec R., Leskovar R.. Deep significance of the field concept in contemporary biomedical sciences. Electromagn. Biol. Med.. 2009; 28:61–70.
  • Klucking E.. 1992. Leaf Venation Patterns. Berlin: J Cramer.
  • Koch A., Meinhardt H.. Biological pattern formation: from basic mechanisms to complex structures. Rev. Mod. Phys.. 1994; 66:1481–1494.
  • Leach C.. Diurnal electrical potentials of plant leaves under natural conditions. Environ. Exper. Botany. 1987; 27:419–430.
  • Levin M.. Bioelectromagnetics in morphogenesis. Bioelectromagnetics. 2003; 24:295–315.
  • Mandoli D., Briggs W.. Optical properties of etiolated plant tissues. PNAS. 1982; 79:2902–2906.
  • Merks R., Van de Peir Y., Inze D., Beemster G.. Canalization without flux sensors: a travelling wave hypothesis. Trends Plant Sci. 2007; 12:384–389.
  • Mesquita M., Vasconcellos A., Luzzi R.. Near-dissipationless coherent excitations in biosystems. Int. J. Quant. Chem.. 1996; 60:689–697.
  • Mesquita M., Vasconcellos A., Luzzi R., Mascarenhas S.. Large-scale quantum effects in biological systems. Int. J. Quant. Chem.. 2005; 102:1116–1130.
  • Mitchison T.. A model for vein formation in higher plants. Proc. Roy. Soc. London B Bio. Sci.. 1980; 207:79–109.
  • Nelson T., Dengler N.. Leaf vascular pattern formation. Plant Cell.. 1997; 9:1121–1135.
  • Nuccitelli R.. Endogenous ionic currents and DC electric fields in multicellular animal tissues. Bioelectromagnetics. 1992; S1:147–157.
  • Parkinson K., Banbury G.. Bio-electric potentials of intact green plants. J. Exper. Bot.. 1965; 17:297–308.
  • Pethig R.. Dielectric properties of body tissues. Clin. Phys. Physiol. Measure.. 1987; 8:5–12.
  • Pietak A.. Describing long-range patterns in leaf vasculature with metaphoric fields. J. Theoret. Biol.. 2009; 261:279–289.
  • Pietruszewski S., Muszynski S., Dziwulska A.. Electromagnetic fields and electromagnetic radiation as non-invasive external stimulants for seeds (selected methods and responses). Int. Agrophys.. 2007; 21:95–100.
  • Pokorny J., Hasek J., Jelinek F.. Endogenous electic field and organization of living matter. Electromagn. Biol. Med.. 2005; 24:185–197.
  • Pokorny J., Hasek J., Jelinek F., Saroch J., Palan B.. Electromagnetic activity of yeast cells in the M phase. Electro. Magnetobiol.. 2001; 20:371–396.
  • Popp F., Chang J., Herzog A., Yan Z., Yan Y.. Evidence of non-classical (squeezed) light in biological systems. Phys. Lett. A. 2002; 293:98–102.
  • Popp F., Walburg M., Schlebusch K., Klimek W.. Evidence of light piping (meridian-like channels) in the human body and nonlocal emf effects. Electromagn. Biol. Med.. 2005; 24:359–374.
  • Popp F., Yan Y.. Delayed luminescence of biological systems in terms of coherent states. Phys. Lett. A. 2002; 293:93–97.
  • Reimers J., Mckemmish L., McKenzie R., Mark A., Hush N.. Weak, strong, and coherent regimes of Frohlich condensation and their applications to terahertz medicine and quantum consciousness. PNAS. 2009; 106:4219–4224.
  • Rolland-Lagan A., Prusinkiewicz P.. Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. Plant J.. 2005; 44:854–865.
  • Runions A., Fuher M., Lane B., Federl P., Rolland-Lagan A., Prusinkiewicz P.. Modeling and visualization of leaf veination patterns. ACM Trans. Graph.. 2005; 24:702–711.
  • Samsonovich A., Scott A., Hameroff S.. Acousto-conformational transitions in cytoskeletal microtubules: Implications for intracellular information processing. Nanobiology. 1992; 1:457–468.
  • Scarpella E., Marcos D., Triml J., Berleth T.. Control of leaf vascular patterning by polar auxin transport. Genes Develop.. 2006; 20:1015–1027.
  • Scarpella E., Meijer A.. Pattern formation in the vascular system of monocot and dicot plant species. New Phytologist.. 2004; 164:209–242.
  • Spanswick R.. Electrical coupling between cells of higher plants: A direct demonstration of intercellular communication. Planta. 1971; 102:215–227.
  • Swarp R., Marchant A., MJ B.. Auxin transport: Providing a sense of direction during plant development. Biochem. Soc. Trans.. 2000; 28:481–485.
  • Tafforeau M., Verdus M., Norris V., White G., Cole M., Demarty M., Thellier M., Ripoll C.. Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics. 2003; 00:1–5.
  • Uggla C., Moritz T., Sandberg G., Sundberg B.. Auxin as a positional signal in pattern formation in plants. PNAS. 1996; 93:9282–9286.
  • Van Wijk R.. Biophoton emission, stress and disease. Experientia. 1992; 48:1029–1030.
  • Van Wijk R.. Bio-photons and bio-communication. J Sci. Explor.. 2001; 15:183–197.
  • Van Wijk R., van Aken J.. Photon emission in tumor biology. Experientia. 1992; 48:1092–1103.
  • Yan Y., Popp F., Sigrist S., Sclesinger D., Dolf A., Yan Z., Cohen S., Chotia A.. Further analysis of delayed luminescence of plants. J. Photochem. Photobiol. B. 2005; 78:235–244.
  • Ye Z.. Vascular tissue differentiation and pattern formation in plants. Ann. Rev. Plant Biol.. 2002; 53:183–202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.