179
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Sinusoidal electromagnetic fields promote bone formation and inhibit bone resorption in rat femoral tissues in vitro

, , , , , & show all
Pages 75-83 | Received 19 Jun 2014, Accepted 29 Sep 2014, Published online: 21 Oct 2014

References

  • Barnaba SA, Ruzzini L, Di Martino A, et al. (2012). Clinical significance of different effects of static and pulsed electromagnetic fields on human osteoclast cultures. Rheumatol. Int. 32:1025–1031
  • Blank M, Goodman R. (2004). Initial interactions in electromagnetic field-induced biosynthesis. J. Cell Physiol. 199:359–363
  • Bodamyali T, Bhatt B, Hughes FJ, et al. (1998). Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins-2 and 4 in rat osteoblasts in vitro. Biochem. Biophys. Res. Commun. 50:458–461
  • Bonjour JP, Schurch MA, Rozzori R. (1996). Nutritional aspects of hip fractures. Bone 18:1395–1445
  • Brighton CT, Wang W, Seldes R, et al. (2001). Signal transduction in electrically stimulated bone cells. J. Bone Joint Surg. 83:1514–1523
  • Chang K, Chang HSW, Yu YH, Shih C. (2004). Pulsed electromagnetic field stimulation of bone marrow cellsderived from ovariectomized rats affects osteoclast formation and local factor production. Bioelectromagnetics 25:134–141
  • Chiu KH, Ou KL, Lee SY, et al. (2007). Static magnetic fields promote osteoblast-Like cells differentiation via increasing the membrane rigidity. Ann. Biomed. Eng. 35:1932–1939
  • Chu P, Chao TY, Lin YF, et al. (2003). Correlation between histomorphometric parameters of bone-resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am. J. Kidney Dis. 41:1052–1059
  • Cooper C, Melton LJ. (1992). Epidemiology of osteoporosis. Trends Endocrinol. Metab. 3:224–229
  • Darvin P, Joung YH, Yang YM. (2013). JAK2-STAT5B pathway and osteoblast differentiation. JAKSTAT 2:e24931
  • Drake MT, Clarke BL, Khosla S. (2008). Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin. Proc. 83:1032–1045
  • Farndale RW, Murray JC. (1985). Pulsed electromagnetic fields promote collagen production in bone marrow fibroblasts via athermal mechanisms. Calcif. Tissue Int. 37:178–182
  • Funk RH, Monsees T, Ozkucur N. (2009). Electromagnetic effects from cell biology to medicine. Prog. Histochem. Cytochem. 43:177–264
  • Ghosh CN, Mandal CC, Choundhury GG. (2007). Statin-induced ras activation integrates the phosphatidylinositol 3-kinase signal to Akt and MAPK for bone morphogenetic protein-2 expression in osteoblast differentiation. J. Biol. Chem. 282:4983–4993
  • Goodman R, Blank M. (2002). Insights into electromagnetic interaction mechanisms. J. Cell. Physiol. 192:16–22
  • Halleen JM, Alatalo SL, Janckila AJ, et al. (2001). Serum tartrate-resistant acid phosphatase 5b is a specific and sensitive marker of bone-resorption. Clin. Chem. 47:597–600
  • Halleen JM, Ranta R. (2001). Tartrate-resistant acid phosphatase as a serum marker of bone-resorption. Am. Clin. Lab. 20:29–30
  • Halleen JM. (2003). Tartrate-resistant acid phosphatase 5b is a specific and sensitive marker of bone-resorption. Anticancer Res. 23:1027–1029
  • Huang LQ, He HC, He CQ, et al. (2008). Clinical update of pulsed electromagnetic fields on osteoporosis. Chin. Med. J. (Engl) 121:2095–2099
  • Hyvarimem A, Nikkila EA. (1962). Specific determination of blood glucose with o-toluidine. Clin. Chim. Acta 7:140–143
  • Janckila AJ, Nakasato YR, Neustadt DH, Yam LT. (2003). Disease-specific expression of tartrate-resistant acid phosphatase isoforms. J. Bone Miner. Res. 18:1916–1919
  • Janckila AJ, Takahashi K, Sun SZ, Yam LT. (2001). Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin. Chem. 47:74–80
  • Jayanand Behari J, Lochan R. (2003). Effects of low level pulsed radio frequency fields on induced osteoporosis in rat bone. Indian J. Exp. Biol. 41:581–586
  • Livak KJ, Schmittgen TD. (2001). Analysis of relative gene expression data using Real-Time quantitative PCR and the 2-ΔΔCt method. Methods. 25:402–408
  • Khatib L, Golan DE, Cho M. (2004). Physiologic electrical stimulation provokes intracellular calcium increase mediated by phospholipase C activation in human osteoblasts. FASEB J. 18:1903–1905
  • Lai YL, Yamaguchi M. (2006). Phytocomponent p-hydroxycinnamic acid stimulates bone formation and inhibits bone resorption in rat femoral tissues in vitro. Mol. Cell. Biochem. 292:45–52
  • Liu CX, Yu JZ, Yang Y, et al. (2013). Effect of 1 mT Sinusoidal electromagnetic fieldson proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells. Bioelectromagnetics. 34:453–464
  • Luo E, Jiao L, Shen G, et al. (2005). Effects of the PEMFs of different intensity on BMD and biomechanical properties of rabbits femur. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 22:1168–1170
  • Ma HP, Ming LG, Ge BF, et al. (2011). Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro. J. Cell Biochem. 112:916–923
  • Manni V, Lisi A, Rieti S, et al. (2004). Low electromagnetic field (50Hz) induces differentiation on primary human oral keratinocytes (HOK). Bioelectromagnetics. 25:118–126
  • Mansour A, Anginot A, Mancini SJ, et al. (2011). Osteoclast activity modulates B-cell development in the bone marrow. Cell Res. 21:1102–1115
  • Mayer-Wagner S, Passberger A, Sievers B, et al. (2011). Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics. 32:283–290
  • Minkin C. (1982). Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif. Tissue Int. 34:285–290
  • Nishimoto SK, Chang CH, Gendler E, et al. (1985). The effect of aging on bone formation in rats: Biochemical and histological evidence for decreased bone formation capacity. Calcif. Tissue. Int. 37:617–624
  • Noll F. (1965). Inhibition of anaerobic glycolysis in cancer cells by glutamate-pyruvate transaminase. Z. Naturforsch. B 20:245–252
  • Opar A. (2009). Late-stage osteoporosis drugs illustrate challenges in the field. Nat. Rev. Drug Discov. 8:757–758
  • Panagopoulos DJ, Karabarbounis A, Margaritis LH. (2002). Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298:95–102
  • Reid IR. (2009). Osteonecrosis of the jaw: Who gets it, and why? Bone 44:4–10
  • Schapira D, Linn S, Sarid M, et al. (1995). Calcium and vitamin D enriched diets increase and preserve vertebral mineral content in aging laboratory rats. Bone. 16:575–582
  • Selvamurugan N, Kwok S, Vasilov A, et al. (2007). Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J. Orthop. Res. 25:1213–1220
  • Shankar VS, Simon BJ, Bax CM, et al. (1998). Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts. J. Cell Physiol. 176:537–544
  • Sun LY, Hsieh DK, Yu TC, et al. (2009). Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics. 30:251–260
  • Tokalov SV, Gutzeit HO. (2004). Weak electromagnetic fields (50 Hz) elicit a stress response in human cells. Environ. Res. 94:145–151
  • Vaaraniemi J, Halleen JM, Kaarlonen K. (2004). Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J. Bone Miner. Res. 19:1432–1440
  • Walter K. (1965). Therapy with anabolic hormones. Landarzt. 41:1212–1219
  • Wei W, Daniel Z, Jae MS, et al. (2000). Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. J. Cell Sci. 113:377–381
  • Wild RA, Buchanan JR, Myers C, Demers LM. (1987). Declining adrenal androgen; an association with bone loss in aging women. Proc. Soc. Exp. Biol. Med. 186:335–360
  • Xie Y, Su N, Jin M, et al. (2012). Intermittent PTH (1-34) injection rescues the retarded skeletal development and postnatal lethality of mice mimicking human achondroplasia and thanatophoric dysplasia. Hum. Mol. Genet. 21:3941–3955
  • Yamaguchi M, Hamamoto R, Uchiyama S, Ishiyama K. (2007). Effects of flavonoid on calcium content in femoral tissue culture and parathyroid hormone-stimulated osteoclastogenesis in bone marrow culture in vitro. Mol. Cell Biochem. 303:83–88
  • Yamaguchi M, Oishi H, Suketa Y. (1987). Stimulatory effect of zinc on bone formation in tissue culture. Biochem. Pharmacol. 36:4007–4012
  • Yasuda H, Shima N, Nakagawa N, et al. (1998). Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): A mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 139:1329–1337
  • Zhou J, Ge B, Chen K, et al. (2011a). Time effect of sinusoidal electromagnetic field on enhancing the maturation and mineralization of osteoblasts in vitro. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 4:1189–1173
  • Zhou J, Ming LG, Ge BF, et al. (2011b). Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone. 49:753–761
  • Zhou J, Wang JQ, Ge BF, et al. (2014). Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro. Bioelectromagnetics. 35:30–40
  • Zhuang H, Wang W, Seldes RM, et al. (1997). Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem. Bio-phys. Res. Commun. 237:225–229

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.