700
Views
25
CrossRef citations to date
0
Altmetric
Original Article

XXIst century magnetotherapy

Pages 190-196 | Received 24 Jul 2015, Accepted 24 Jul 2015, Published online: 07 Oct 2015

References

  • Adey, W.R. (2004). Potential therapeutic application of nonthermal electromagnetic fields: Ensemble organization of cells in tissue as a factor in biological field sensing. In: Rosch, P.J., Markov, M.S. Bioelectromagnetic Medicine. New York: Marcel Dekker. pp. 1–12
  • Bassett, C.A.L., Pawluk, R.J., Pilla, A.A. (1974). Acceleration of fracture repair by electromagnetic fields. Ann. NY Acad. Sci. 238:242–262
  • Bassett, C.A.L., Pilla, A.A., Pawluk, R. (1977). A non-surgical salvage of surgically-resistant pseudoarthroses and non-unions by pulsing electromagnetic fields. Clin. Orthop. 124:117–131
  • Bassett, C.A.L. (1989). Fundamental and practical aspects of therapeutical uses of pulse electromagnetic fields (PEMFs). Crit. Rev. Biomed. Eng. 17:451–529
  • Bassett, C.A.L. (1994). Therapeutic uses of electric and magnetic fields in orthopedics. In: Karpenter, D., Ayrapetyan, S. Biological Effects of Electric and Magnetic Fields. San Diego: Academic Press. pp. 13–18
  • Blackman, C.F., Blanchard, J.P., Benane, S.G., House, D.E. (1995). The ion parametric resonance model predicts magnetic field parameters that affect nerve cells. FASEB J. 9:547–551
  • Blanchard, J.P., Blackman, C.F. (1994). Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–238
  • Bourguignon, G.L., Bourguignon, L.Y.W. (1989). Electrical stimulation of protein and DNA synthesis. Med. Rehab. 70:624–627
  • Canaday, D.J., Lee, R.C. (1991). Scientific basis for clinical applications of electric fields in soft-tissue Repair. In: Brighton, C.T., Pollack, S.R. Electromagnetics in Biology and Medicine. San Francisco: San Francisco Press Inc. pp. 275–291
  • Detlavs, I. (1987). Electromagnetic Therapy in Traumas and Diseases of the Support-motor Apparatus. Riga: RMI. pp. 198
  • Gilbert, W. (1600). DE MAGNETE. (Written in Latin, Translated and published by Dover Publication 1991, p. 368)
  • Ginsburg, A.J. (1934). Ultrashort radio waves as a therapeutic agent. Med. Record 19:1–8
  • Katz, E., Lioubashevski, O., Willner, I. (2005). Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: Enhanced performance of befoul cells. J. Am. Chem. Soc. 127:3979–3988
  • Lednev, V.V. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12:71–75
  • Leszczynski, D., Kuokka, R., Joenvaara, S., Reivinen, J. (2003). New approach in EMF research–proteomics and transcriptomics. Proceedings VIth International Congress of EBEA, Budapest, 13–15 November. p. 5
  • Liboff, A.R. (1985). Cyclotron resonance in membrane transport. In: Chiabrera, A., Nicolini, C., Schwan, H.P. Interactions Between Electromagnetic Fields and Cells. New York: Plenum Press. pp. 281–396
  • Liboff, A.F., Fozek, R.J., Sherman, M.L., et al. (1987). Ca2+-45 cyclotron resonance in human lymphocytes. J. Bioelectricity 6:13–22
  • Liboff A.R. (2004). Signal shapes in electromagnetic therapy. In: Rosch P.J., Markov M. Bioelectromagnetic Medicine. NY: Marcel Dekker. pp. 17–37
  • Markov, M.S. (1987). Biophysical aspects of the application of electromagnetic fields in orthopedics and traumatology. In: Detlav, I. Electromagnetic Therapy in Traumas and Diseases of the Support-Motor Apparatus. Riga: Zinatie. pp. 76–86
  • Markov, M.S. (1990). Influence of radiation on biological systems. In: Allen, M.J. Charge and Field Effects in Biosystems II. New York: Plenum Press. pp. 241–250
  • Markov, M.S. (1994). Biological effects of extremely low frequency magnetic fields. In: Ueno S. Biomagnetic Stimulation. New York: Plenum Press. pp. 91–103
  • Markov, M.S. (1995). Electric current and electromagnetic field effects on soft tissues. Wounds 7:94–110
  • Markov, M.S. (2002). How to go to magnetic field therapy? In: Kostarakis P. Proceedings of Second International Workshop of Biological effects of Electromagnetic fields, Rhodes, Greece, 7–11 October 2002, ISBN: #960-86733-3-X. 5-15
  • Markov, M.S. (2004a). Myosin light chain phosphorylation modification depending on magnetic fields I. Theoret. Electromag. Biol. Med. 23:55–74
  • Markov, M.S. (2004b). Myosin light chain phosphorylation modification depending on magnetic fields II. Exp. Electromag. Biol. Med. 23:125–140
  • Markov, M.S. (2004c). Magnetic and electromagnetic field therapy: Basic principles of application for pain relief. In: Rosch, P.J., Markov, M.S. Bioelectromagnetic Medicine. New York: Marcel Dekker. pp. 251–264
  • Markov, M.S. (2004d). Myosin phosphorylation – a plausible tool for studying biological windows. In: Kostarakis, P. Ross Adey Memorial Lecture. Proceedings of Third International Workshop on Biological Effects of EMF, Kos, Greece, October 4–8, ISBN: 960-233-151-8. pp. 1–9
  • Markov, M.S. (ed.) (2015). Electromagnetic Fields in Biology and Medicine. Boca Raton FL: CRC Press
  • Markov, M., Colbert, A. (2000). Magnetic and electromagnetic field therapy. J. Back Musculoskeletal. Rejab. 15:17–29
  • Markov, M.S., Pilla, A.A. (1993). Ambient range sinusoidal and DC magnetic fields affect myosin phosphorylation in a cell-free preparation. In: Blank, M. Electricity and Magnetism in Biology and Medicine. San Francisco: San Francisco Press. pp. 323–327
  • Markov, M.S., Pilla, A.A. (1994). Static magnetic field modulation of myosin phosphorylation: Calcium dependence in two enzyme preparations. Bioelectrochem. Bioenergetics. 35:57–61
  • Markov, M.S., Ryaby, J.T., Kaufman, J.J., Pilla, A.A. (1992). Extremely weak AC and DC magnetic field significantly affect myosin phosphorylation. In: Allen, M.J., Cleary, S.F., Sowers, A.E., Shillady D.D. Charge and Field Effects in Biosystems-3. Boston: Birkhauser. pp. 225–230
  • Markov, M.S., Wang, S., Pilla, A.A. (1993). Effects of weak low frequency sinusoidal and DC magnetic fields on myosin phosphorylation in a cell-free preparation. Bioelectrochem. Bioenergetics. 30:119–125
  • Markov, M.S., Muehsam, D.J., Pilla, A.A. (1994). Modulation of cell-free myosin phosphorylation with pulsed radio frequency electromagnetic fields. In: Allen, M.J., Cleary, S.F., Sowers, A.E. Charge and Field Effects in Biosystems 4. New Jersey: World Scientific. pp. 274–288
  • Markov, M.S., Nindl, G., Hazlewood, C., Cuppen, J. (2006). Interactions between electromagnetic fields and immune system: Possible mechanisms for pain control. In: Ayrapetyan, S., Markov, M.S. Bioelectromagnetics: Current Concepts. Dordrecht, The Netherlands: Springer. pp. 213–226
  • Nindl, G., Hughes, E.F., Johnson, M.T., Markov, M.S. (2002). Therapeutic electromagnetic field effects on normal and activated Jurkat Cells. Proceedings of International Workshop of Biological Effects of Electromagnetic Fields, Rhodes, Greece. ISBN: 960-86733-3-X
  • Pawluk, W. (2015). Magnetic fields for pain control. In: Markov, M. Electromagnetic Fields in Biology and Medicine. Boca Raton, FL: CRC Press. pp. 271–297
  • Pilla, A.A. (1972) Electrochemical information and energy transfer in vivo. Proceedings of the seventh IECEC, Washington, D.C., American Chemical Society. pp. 761–764
  • Pilla, A.A. (1974). Electrochemical information transfer at living cell membranes. Ann. NY Acad. Sci. 238:149
  • Pilla, A.A. (2007). Mechanisms and therapeutic applications of time-varying and static magnetic fields. In: Barnes, F., Greenebaum, B. Handbook of Biological Effects of Electromagnetic Fields, Third edition. Boca Raton, FL: CRC Press
  • Pilla, A.A. (2015). Pulsed electromagnetic fields: From signaling to healing. In: Markov, M. Electromagnetic Fields in Biology and Medicine. Boca Raton, FL: CRC Press. pp. 29–47
  • Polk, C. (1994). Therapeutic application of low frequency electric and magnetic fields. In: Lin, J.C. Advances in Electromagnetic Fields in Living Systems. New York: Plenum Press. pp. 129–154
  • Rodeman, H.P., Bayreuther, K., Pfleiderer, G. (1989). The differentiation of normal and transformed human fibroblasts in vitro is influenced by electromagnetic fields. Exp. Cell. Res. 182:610–621
  • Rosch, P.J., Markov, M. (2004). Bioelectromagnetic Medicine. NY: Marclel Dekker. pp. 850
  • Shouvalova, L.A., Ostrovskaya, M.V., Sosunov, E.A., Lednev, V.V. (1991). Weak magnetic fields tuned to parametric resonance conditions change the rate of calcium–calmodulin depleted myosin phosphorylation. Dokladi Acad. Sci. USSR 317:227–231
  • Shupak, N. (2003). Therapeutic uses of pulsed magnetic-field exposure: A review. Radio Sci. Bull. 307:9–32
  • Todorov, N. (1982). Magnetotherapy. Sofia: Meditzina i Physcultura Publishing House. pp. 106
  • Vesselinova, L. (2015). Long-term low-intensive electromagnetic fields influence on physiotherapy personnel morbidity profile. In: Markov, M. Electromagnetic Fields in Biology and Medicine. Boca Raton, FL: CRC Press. pp. 365–383

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.