210
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia

&
Pages 305-320 | Received 11 Jan 2015, Accepted 19 Jul 2015, Published online: 25 Mar 2016

References

  • Amerizadeh, A. (2009). The effect of hyperthermia on survival fraction of DU 145 human prostate carcinoma cell line in monolayer and spheroid culture. Iran. J. Cancer. Prev. 12:195–202.
  • Attar, M. M., Haghpanahi, M., Amanpour S., Mohaqeq M. (2014). Analysis of bioheat transfer equation for hyperthermia cancer treatment. J. Mech. Sci. Technol. 28;763–771.
  • Attar, M. M., Haghpanahi, M., Shahverdi, H., Emam, A. (2015). Thermo-mechanical analysis of soft tissue in local hyperthermia treatment J. Mech. Sci. Technol. (in press).
  • Bagaria, H. G., Johnson, D. T. (2007). “Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment”. Int. J. Hyperther. 21:57–75.
  • Baronzio, G. F., Hager, E. D. (2006). Hyperthermia in Cancer Treatment: A Primer. New York: Landes Bioscience and Springer Science+Business Media, LLC.
  • Bicher, H. I., Bruley, D. F. (1981). Proceedings of Ihe First Annual Meeting of the NOrlh American Hyperthermia Group (NAHG), Delroit, Michigan.
  • Bicher, B. I., McLaren, J. R, Pigliucci, G. M. (1989). Consensus on Hyperthermia for the 1990s. Clinical Practice in Cancer Treatment, Proceedings of the Twelfth International Symposium on Clinical Hyperthermia, Rome, Italy.
  • Engin, K. (1994). Biological rationale for hyperthermia in cancer treatment (II). Neoplasma. 41(5):277–283.
  • Fukao, H., Ikeda, M., Ichikawa, T., et al. (2000). Effect of hyperthermia on the viability and the fibrinolytic potential of human cancer cell lines. Clinica. Chimica. Acta. 296:17–33.
  • Hahn, G. M. (1982). Hyperthermia and Cancer, New York: Plenum Press.
  • Hand, J. W., Lau, R. W., Lagendijk, J. J. et al. (1999). Electromagnetic and thermal modeling of SAR and temperature fields in tissue due to an RF decoupling coil. Magn. Reson. Med. 42(1):183–192.
  • Hergt, R., Hiergeist, R., Zeisberger, M., et al. (2004). Enhancement of AC-losses of magnetic nanoparticles for heating applications. J. Magn. Magn. Mater. 280:358–368.
  • Hilger, I., Hergt, R., Kaiser, W. A. (2005). Towards breast cancer treatment by magnetic heating. J. Magn. Magn. Mater. 293:314–319.
  • Issels, R. D., Wilmanns, W., (Eds.) (1988). Application of Hyperthermia in the Treatment of Cancer. Berlin, Heidelberg: Springer-Verlag.
  • Javidi, M., Heydari, M., Mahdi, M., et al. (2014). Cylindrical agar gel with fluid flow subjected to an alternating magnetic field during hyperthermia. Int. J. Hyperther. 31:33–39.
  • Johannsen, M., Jordan, A., Scholz, R., et al. (2004). Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cancer. J. Endourol. 18(5):495–500.
  • Johannsen, M., Gneveckow, U., Eckelt, L., et al. (2005). Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperther. 21:637–647.
  • Johannsen, M., Thiesen, B., Jordan, A., et al. (2005). Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic dunning R3327 rat model. Prostate. 64:283–292.
  • Johannsen, M., Thiesen, B., Gneveckow, U., et al. (2006). Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. Prostate. 66(1):97–104.
  • Johannsen, M., Gneveckow, U., Thiesen, B., et al. (2007). Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three- dimensional temperature distribution. Eur. Urol. 52(6):1653–1661.
  • Johannsen, M., Gneveckow, U., Taymoorian, K., et al. (2007). Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial. Int. J. Hyperther. 23(3):315–323.
  • Jordan, A., Scholz, R., Wust, P., et al. (1997). Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int. J. Hyperther. 13(6):587–605.
  • Kapp, D. S., Hahn, G. M., Carlson, R. W. (2000). Principles of hyperthermia. In: Bast, R. C. Jr, Kufe, D. W., Pollock, R.E., et al. Holland-Frei Cancer Medicine. 5th edition. Hamilton (ON): BC Decker. pp. 12–45.
  • Khandhar, A. P., Ferguson, R. M., Simon, J. A., Krishnan, K. M. (2012). Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J. Biomed. Mater. Res. Part A. 100A:728–737.
  • Li, Z., Kawashita, M., Araki, N., et al. (2011). Effect of particle size of magnetite nanoparticles on heat generating ability under alternating magnetic field. Bioceram. Dev. Appl. 1.
  • Mehdaoui, B., Meffre, A., Carrey, J., et al. (2011). Optimal size of nanoparticles for magnetic hyperthermia: A combined theoretical and experimental study, 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Adv. Funct. Mater. 21:4573–4581.
  • Minev, B. R. (2011). Cancer Management in Man: Chemotherapy, Biological Therapy, Hyperthermia and Supporting Measures. Springer Dordrecht Heidelberg London, New York: Springer Science+Business Media B.V.
  • Moroz, P., Jones, S. K., Gray, B. N. (2002). Magnetically mediated hyperthermia: Current status and future directions. Int. J. Hyperther. 18(4):267–284.
  • O’Reilly N., (2013). Characterization and functionalization of iron oxide nanoparticles for use as potential agents for cancer thermotherapy, [dissertation for PhD thesis]. Madison, Wisconsin: University of Wisconsin-Madison.
  • Overgaard, J., Overgaard, M., (1987). Hyperthermia as an adjuvant to radiotherapy in the treatment of malignant. Int. J. Hyperther. 3(6):483–501.
  • Rosensweig, R. E. (2002). Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252:370–374.
  • van der Zee, J., González, G. D. (2002). The Dutch deep hyperthermia trial: Results in cervical cancer. Int. J. Hyperthermia. 18(1):1–12.
  • Zhu, L., Xu, L. X., Chencinski, N. (1998). Quantification of the 3-D electromagnetic power absorption rate in tissue during transurethral prostatic microwave thermotherapy using heat transfer model. IEEE T. Bio-Med. Eng. 45:1163–1172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.