369
Views
11
CrossRef citations to date
0
Altmetric
Review

Effects of electromagnetic fields on osteoporosis: A systematic literature review

, , &
Pages 384-390 | Received 11 May 2015, Accepted 05 Oct 2015, Published online: 29 Jun 2016

References

  • Aaron, R. K., Ciombor, D. M., Simon, B. J. (2004). Treatment of nonunions with electric and electromagnetic fields. Clin. Orthop. Relat. Res. 419:21–29.
  • Bernabei, R., Martone, A. M., Ortolani, E., et al. (2014). Screening, diagnosis and treatment of osteoporosis: A brief review. Clin. Cases Miner. Bone Metab. 11:201–207.
  • Beyer, N. N., Da, S. M. L. (2006). Mesenchymal stem cells: Isolation, in vitro expansion and characterization. Handb. Exp. Pharmacol. 174:249–282.
  • Bodamyali, T., Bhatt, B., Hughes, F. J., et al. (1998). Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem. Biophys. Res. Commun. 250:458–461.
  • Bonura, F. (2009). Prevention, screening, and management of osteoporosis: An overview of the current strategies. Postgrad. Med. 121:5–17.
  • Boyle, W. J., Simonet, W. S., Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature 423:337–342.
  • Buono, R., Vantaggiato, C., Pisa, V., et al. (2012). Nitric oxide sustains long-term skeletal muscle regeneration by regulating fate of satellite cells via signaling pathways requiring Vangl2 and cyclic GMP. Stem Cells 30:197–209.
  • Chang, K., Chang, W. H., Huang, S., et al. (2005). Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J. Orthop. Res. 23:1308–1314.
  • Chang, K., Chang, W. H., Tsai, M. T., et al. (2006). Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts. Connect. Tissue Res. 47:222–228.
  • Chang, K., Hong-Shong, C. W., Yu, Y. H., et al. (2004). Pulsed electromagnetic field stimulation of bone marrow cells derived from ovariectomized rats affects osteoclast formation and local factor production. Bioelectromagnetics 25:134–141.
  • Cheng, G., Zhai, Y., Chen, K., et al. (2011). Sinusoidal electromagnetic field stimulates rat osteoblast differentiation and maturation via activation of NO-cGMP-PKG pathway. Nitric Oxide 25:316–325.
  • Cooper, C., Cole, Z. A., Holroyd, C. R., et al. (2011). Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos. Int. 22:1277–1288.
  • Diniz, P., Shomura, K., Soejima, K., et al. (2002a). Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 23:398–405.
  • Diniz, P., Soejima, K., Ito, G. (2002b). Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide 7:18–23.
  • Du, L., Fan, H., Miao, H., et al. (2014). Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells. Bioelectromagnetics 35:519–530.
  • Esposito, M., Lucariello, A., Riccio, I, et al. (2012). Differentiation of human osteoprogenitor cells increases after treatment with pulsed electromagnetic fields. In Vivo 26:299–304.
  • Garland, D. E., Adkins, R. H., Matsuno, N. N., et al. (1999). The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury. J. Spinal Cord Med. 22:239–245.
  • Giusti, A., Giovale, M., Ponte, M., et al. (2013). Short-term effect of low-intensity, pulsed, electromagnetic fields on gait characteristics in older adults with low bone mineral density: A pilot randomized-controlled trial. Geriatr. Gerontol. Int. 13:393–397.
  • Golob, A. L., Laya, M. B. (2015). Osteoporosis: Screening, prevention, and management. Med. Clin. North Am. 99:587–606.
  • Grassi, C., D’Ascenzo, M., Torsello, A., et al. (2004). Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307–315.
  • Gupta, A. K., Srivastava, K. P., Avasthi, S. (2009). Pulsed electromagnetic stimulation in nonunion of tibial diaphyseal fractures. Indian J. Orthop. 43:156–160.
  • Hannemann, P. F. W., Mommers, E. H. H., Schots, J. P. M., et al. (2014). The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: A systematic review and meta-analysis of randomized controlled trials. Arch. Orthopaedic Trauma Surg. 134:1093–1106.
  • Hayashi, M., Nakashima, T. (2014). Bone and stem cells. Molecular mechanisms of the differentiation and activation of osteoclasts derived from hematopoietic cells. Clin. Calcium 24:487–500.
  • Hayashi, Y. (2007). Bone diseases with pain. Osteoporosis. Clin. Calcium 17:606–612.
  • He, J., Zhang, Y., Chen, J., et al. (2015). Effects of pulsed electromagnetic fields on the expression of NFATc1 and CAII in mouse osteoclast-like cells. 27:13–19.
  • Hu, H. M., Yang, L., Wang, Z., et al. (2013). Overexpression of integrin a2 promotes osteogenic differentiation of hBMSCs from senile osteoporosis through the ERK pathway. Int. J. Clin. Exp. Pathol. 6:841–852.
  • Huang, L. Q., He, H. C., He, C. Q., et al. (2008a). Clinical update of pulsed electromagnetic fields on osteoporosis. Chin. Med. J. (Engl.) 121:2095–2099.
  • Huang, L. Q., He, H. C., He, C. Q., et al. (2008b). Clinical update of pulsed electromagnetic fields on osteoporosis. Chin. Med. J. (Engl.) 121:2095–2099.
  • Jaiswal, R. K., Jaiswal, N., Bruder, S. P., et al. (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem. 275:9645–9652.
  • Jansen, J. H., van der Jagt, O. P., Punt, B. J., et al. (2010). Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: An in vitro study. BMC Musculoskelet Disord. 11:188.
  • Jing, D., Cai, J., Shen, G., et al. (2011). The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats. Osteoporos. Int. 22:1885–1895.
  • Jing, D., Cai, J., Wu, Y., et al. (2014a). Moderate-intensity rotating magnetic fields do not affect bone quality and bone remodeling in hindlimb suspended rats. PLoS One 9:e102956.
  • Jing, D., Cai, J., Wu, Y., et al. (2014b). Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats. J. Bone Miner. Res. 29(10):2250–2261.
  • Kajkenova, O., Lecka-Czernik, B., Gubrij, I., et al. (1997). Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J. Bone Miner. Res. 12:1772–1779.
  • Ke, X. Q., Sun, W. J., Lu, D. Q., et al. (2008). 50-Hz magnetic field induces EGF-receptor clustering and activates RAS. Int. J. Radiat. Biol. 84:413–420.
  • Kim, I. S., Song, J. K., Song, Y. M., et al. (2009). Novel effect of biphasic electric current on in vitro osteogenesis and cytokine production in human mesenchymal stromal cells. Tissue Eng. Part A 15:2411–2422.
  • Li, S., Yu, B., Zhou, D., et al. (2013). Electromagnetic fields for treating osteoarthritis. Cochrane Database Syst. Rev. 12:CD003523.
  • Liu, H., Liu, Y., Yang, L., et al. (2014). Curative effects of pulsed electromagnetic fields on postmenopausal osteoporosis (article in Chinese) Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 31:48–52.
  • Liu, H. F., Yang, L., He, H. C., et al. (2013a). Pulsed electromagnetic fields on postmenopausal osteoporosis in southwest China: A randomized, active-controlled clinical trial. Bioelectromagnetics 34:323–332.
  • Liu, H., Yang, L., He, H., et al. (2013b). The hemorheological safety of pulsed electromagnetic fields in postmenopausal women with osteoporosis in southwest China: A randomized, placebo controlled clinical trial. Clin. Hemorheol. Microcirc. 55:285–295.
  • Lorich, D. G., Brighton, C. T., Gupta, R., et al. (1998). Biochemical pathway mediating the response of bone cells to capacitive coupling. Clin. Orthop. Relat. Res. :246–256
  • Meskens, M. W., Stuyck, J. A., Feys, H., et al. (1990). Treatment of nonunion using pulsed electromagnetic fields: A retrospective follow-up study. Acta Orthop. Belg. 56:483–488.
  • Mujoo, K., Krumenacker, J. S., Murad, F. (2011). Nitric oxide-cyclic GMP signaling in stem cell differentiation. Free Radical Biol. Med. 51:2150–2157.
  • Niezgoda, J. A., Hardin, S. T., Kubat, N., et al. (2014). The management of intractable pain with adjuvant pulsed electromagnetic field therapy. Adv. Skin Wound Care 27:205–209.
  • Oke, K. I., Umebese, P. F. (2013). Evaluation of the efficacy of pulsed electromagnetic therapy in the treatment of back pain: A randomized controlled trial in a tertiary hospital in Nigeria. West Indian Med. J. 62:205–209.
  • Ongaro, A., Pellati, A., Bagheri, L., et al. (2014). Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics 35:426–436.
  • Peng, S., Zhou, G., Luk, K. D., et al. (2009). Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol. Biochem. 23:165–174.
  • Pilla, A., Fitzsimmons, R., Muehsam, D., et al. (2011). Electromagnetic fields as first messenger in biological signaling: Application to calmodulin-dependent signaling in tissue repair. Biochim. Biophys. Acta 1810:1236–1245.
  • Poor, G., Szathmari, M., Balogh, A. (1998). Diagnosis, prevention and therapy of osteoporosis. Orv. Hetil 139:889–901.
  • Reginster, J., Burlet, N. (2006). Osteoporosis: A still increasing prevalence. Bone 38:4–9.
  • Riggs, B. L., Melton, L. R. (1995). The worldwide problem of osteoporosis: Insights afforded by epidemiology. Bone 17:505S–511S.
  • Rodriguez, J. P., Montecinos, L., Rios, S., et al. (2000). Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J. Cell Biochem. 79:557–565.
  • Roodman, G. D. (1991). Osteoclast differentiation. Crit. Rev. Oral Biol. Med. 2:389–409.
  • Schwartz, Z., Fisher, M., Lohmann, C. H., et al. (2009). Osteoprotegerin (OPG) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates. Ann. Biomed. Eng. 37:437–444.
  • Seger, R., Krebs, E. G. (1995). The MAPK signaling cascade. FASEB J. 9:726–735.
  • Shankar, V. S., Simon, B. J., Bax, C. M., et al. (1998). Effects of electromagnetic stimulation on the functional responsiveness of isolated rat osteoclasts. J. Cell Physiol. 176:537–544.
  • Simonet, W. S., Lacey, D. L., Dunstan, C. R., et al. (1997). Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 89:309–319.
  • Song, M., Yu, J., Zhao, D., et al. (2014a). The time-dependent manner of sinusoidal electromagnetic fields on rat bone marrow mesenchymal stem cells proliferation, differentiation, and mineralization. Cell Biochem. Biophys. 69:47–54.
  • Song, M., Zhao, D., Wei, S., et al. (2014b). The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone. Bioelectromagnetics 35:479–490.
  • Sreejit, P., Dilip, K. B., Verma, R. S. (2012). Generation of mesenchymal stem cell lines from murine bone marrow. Cell Tissue Res. 350:55–68.
  • Sul, A. R., Park, S. N., Suh, H. (2006). Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines. Yonsei Med. J. 47:852–861.
  • Sun, L. Y., Hsieh, D. K., Lin, P. C., et al. (2010). Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bioelectromagnetics 31:209–219.
  • Sun, L. Y., Hsieh, D. K., Yu, T. C., et al. (2009). Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Clin. Orthop. Relat. Res. 350:246–256.
  • Tabrah, F., Hoffmeier, M., Gilbert, F. J., et al. (1990). Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). J. Bone Miner. Res. 5:437–442.
  • Tabrah, F. L., Ross, P., Hoffmeier, M., et al. (1998). Clinical report on long-term bone density after short-term EMF application. Bioelectromagnetics 19:75–78.
  • Tondreau, T., Lagneaux, L., Dejeneffe, M., et al. (2004). Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: Phenotype, proliferation kinetics and differentiation potential. Cytotherapy 6:372–379.
  • Trock, D. H. (2000). Electromagnetic fields and magnets. Investigational treatment for musculoskeletal disorders. Rheum. Dis. Clin. North Am. 26:51–62, viii.
  • Trock, D. H., Bollet, A. J., Markoll, R. (1994). The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and cervical spine. Report of randomized, double blind, placebo controlled trials. J. Rheumatol. 21:1903–1911.
  • Udagawa, N., Takahashi, N., Yasuda, H., et al. (2000). Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141:3478–3484.
  • van der Jagt, O. P., van der Linden, J. C., Waarsing, J. H., et al. (2014). Electromagnetic fields do not affect bone micro-architecture in osteoporotic rats. Bone Joint Res. 3:230–235.
  • Verma, S., Rajaratnam, J. H., Denton, J., et al. (2002). Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J. Clin. Pathol. 55:693–698.
  • Wagner, E. F., Karsenty, G. (2001). Genetic control of skeletal development. Curr. Opin. Genet. Dev. 11:527–532.
  • Walleczek, J. (1992). Electromagnetic field effects on cells of the immune system: The role of calcium signaling. FASEB J 6:3177–3185.
  • Wanachewin, O., Boonmaleerat, K., Pothacharoen, P., et al. (2012). Sesamin stimulates osteoblast differentiation through p38 and ERK1/2 MAPK signaling pathways. BMC Complement Altern. Med. 12:71.
  • Wang, J., An, Y., Li, F., et al. (2014). The effects of pulsed electromagnetic field on the functions of osteoblasts on implant surfaces with different topographies. Acta Biomater. 10:975–985.
  • Weng, Y., Gao, Q., Shao, H., et al. (2003). Osteoporotic pain and effectiveness of pulsed electromagnetic fields in treating pain in patients with osteoporosis. Chin. J. Osteoporos. 9:317–322.
  • Willson, T., Nelson, S. D., Newbold, J., et al. (2015). The clinical epidemiology of male osteoporosis: A review of the recent literature. Clin. Epidemiol. 7:65–76.
  • Woo, J., Leung, J., Lau, E. (2009). Prevalence and correlates of musculoskeletal pain in Chinese elderly and the impact on 4-year physical function and quality of life. Public Health 123:549–556.
  • Yang, Y., Tao, C., Zhao, D., et al. (2010). EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics 31:277–285.
  • Yong, Y., Ming, Z. D., Feng, L., et al. (2014). Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. J. Tissue Eng. Regen. Med. [Epub ahead of print.]
  • Yuge, L., Okubo, A., Miyashita, T., et al. (2003). Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochem. Biophys. Res. Commun. 311:32–38.
  • Zhang, W., Liu, H. T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res, 12:9–18.
  • Zhang, X., Zhang, J., Qu, X., et al. (2007). Effects of different extremely low-frequency electromagnetic fields on osteoblasts. Electromagn. Biol. Med. 26:167–177.
  • Zhou, J., Chen, S., Guo, H., et al. (2013). Pulsed electromagnetic field stimulates osteoprotegerin and reduces RANKL expression in ovariectomized rats. Rheumatol. Int. 33:1135–1141.
  • Zhou, J., He, H., Yang, L., et al. (2012). Effects of pulsed electromagnetic fields on bone mass and Wnt/beta-catenin signaling pathway in ovariectomized rats. Arch. Med. Res. 43:274–282.
  • Zhou, J., Li, X., Liao, Y., et al. (2014). Pulsed electromagnetic fields inhibit bone loss in streptozotocin-induced diabetic rats. Endocrine 49:258–266.
  • Zhou, J., Ming, L. G., Ge, B. F., et al. (2011). Effects of 50 Hz sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone 49:753–761.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.