99
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A human source for ELF magnetic perturbations

Pages 337-342 | Received 03 Jun 2015, Accepted 03 Oct 2015, Published online: 29 Jun 2016

References

  • Adey, W. R. (1981). Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev. 61:435–514.
  • Alberto, D., Busso, L., Crotti, G., et al. (2008). Effects of static and low-frequency alternating magnetic fields on the ionic electrolytic currents of glutamic acid aqueous solutions. Electromagn. Biol. Med. 27:25–39.
  • Bawin, S. M., Gavalas-Medici, R. J., Adey, W. R. (1973). Effects of modulated very high frequency fields on specific brain rhythms in cats. Brain Res. 58:365–384.
  • Bawin, S. M., Adey, W. R. (1976). Sensitivity of calcium binding in cerebral tissue for weak environmental electric fields oscillating at low frequencies. Proc. Natl. Acad. Sci. USA 73:1999–2003.
  • Belyaev, G. G., Chmyrev, V. M., Kleimenova, N. G. (2003). Hazardous ULF environment of Moscow city. Physics of auroral phenomena. Proceedings of 26th Annual Seminar, Kola Science Center, Russian Academy of Sciences, 249–252.
  • Blackman, C. F., Benane, S. G., Kinney, L. S., et al. (1982). Effect of ELF fields on calcium ion efflux from brain tissue in vitro. Radiat. Res. 92:510–520.
  • Blackman, C. F., Benane, S. G., Rabinowitz, J. R., et al. (1985). A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6:327–337.
  • Chapman, S. (1918). Diurnal changes of the earth’s magnetism. The Observatory 41:52–60.
  • Close, J. (2012). Are stress responses to geomagnetic storms mediated by the cryptochrome compass system? Proc. R. Soc. B 279:2081–2090.
  • Comisso, N., Del Giudice, E., De Ninno, A., et al. (2006). Dynamics of the ion resonance effect on amino acids absorbed at the interfaces. Bioelectromagnetics 27:16–25.
  • Consales, C., Merla, C., Marino, C., Benassi, B. (2013). Electromagnetic fields, oxidative stress, and neurodegeneration. Int. J. Cell Biol. doi:10.1155/2013/683897.
  • Cosic, I., Cvetkovic, D., Fang, Q., et al. (2006). Human electrophysiological signal responses to ELF Schumann resonance and artificial electromagnetic fields. Trans. Faculty Med. Eng. Belgrade 34:93–103.
  • Cvetkovic, D., Cosic, I. (2009). Alterations of human electroencephalographic activity caused by multiple extremely low frequency magnetic exposure. Med. Biol. Eng. Comput. 47:1063–1073.
  • Deibert, M. C., Mcleod, B. R., Smith, S. D., Liboff, A. R. (1994). Ion resonance electromagnetic field stimulation of fracture healing in rabbits with a fibular ostectomy. J. Orthop. Res. 12:878–85.
  • D’Emilia, E., Giuliani, L., Lisi, A., et al. (2014). Lorentz force in water: Evidence that hydronium cyclotron resonance enhances polymorphism. Electromagn. Biol. Med. doi:10.3109/15368378.2014.937873.
  • Feigin, V. L., Parmar, P. C., Barker-Collo, S., et al. (2014). Geomagnetic storms can trigger stroke: Evidence from 6large population-based studies in Europe and Australasia. Stroke. doi:10.1161/strokeaha.113. 004577.
  • Flohr, H. (2000). NMDA receptor-mediated computational processes and phenomenal consciousness. In: Metzinger, T. Neuronal Correlates of Consciousness. Empirical and Conceptual Questions. Cambridge MIT Univ Press. pp. 245–258.
  • Frilot, II, C., Carrubba, S., Marino, A. A. (2014). Sensory transduction of weak electromagnetic fields: Role of glutamate neurotransmission mediated by NMDA receptors. Neuroscience 258:184–191.
  • Fullekrug, M. (2005). Detection of thirteen resonances of radio waves from particularly intense lightning discharges. Geophys. Res. Lett. 32:L13809. doi:10.1029/2005GLO23208.
  • Gaetani, R., Ledda, M., Barile, L., et al. (2009). Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic field. Cardiovasc. Res. 82:411–420.
  • Galejs, J. (1965). Schumann resonances. Radio Sci. 69:1043–1055.
  • Gamble, K. L., Berry, R., Frank, S. J., Young, M. E. (2014). Circadian clock control of endocrine factors. Nature Rev. Endocrin. 10:466–475.
  • Guglielmi, A., Kangas, J. (2007). Pc 1 waves in the system of solar-terrestrial relations: New reflections. J. Atmos Solar-Terr .Phys. 69:1635–1643.
  • Hales, C. G. (2014).The origin of the brain’s endogenous electromagnetic field and its relationship to provision of consciousness. J Integr. Sci. 13:313–361.
  • Hamalainen, M., Hari, R., Ilmoniemi, R. J., et al. (1993). Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65:413–497.
  • Horton, P., Ryaby, J. T., Magee, F. P., Weinstein, A. M. (1993). Stimulation of specific neuronal differentiation proteins in PC-12 cells by combined AC/DC magnetic fields. In: Blank, M. Electricity and Magnetism in Biology and Medicine. San Francisco: San Francisco Press.
  • Janac, B., Tovilovic, G., Tomic, M., et al. (2009). Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptor activity in rat brain. Gen. Physiol. Biophys. 28:41–46.
  • Jelenkovic, A., Janac, B., Pesic, V., et al. (2006). Effects of extremely low frequency magnetic fields in the brain of rats. Brain Res. Bull. 68:355–360.
  • Kepko, L., Spence, H. E. (2003). Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J. Geophys. Res., 108:1257. doi:10.1029/2002JA009676, A6.
  • Kleimenova, N. G., Kozyreva, O. V., Breus, T. K., Rapoport, S. I. (2007). Pc1 geomagnetic pulsations as a potential hazard of the myocardial infarction. J. Atmos Solar-Terr. Phys. 69:1759–1764.
  • Lai, H., Singh, N. P. (2004). Magnetic-field–induced DNA strand breaks in brain cells of the rat. Environ. Health Perspect. 112:687–694.
  • Liboff, A. R. (1985). Geomagnetic cyclotron resonance in living cells. J. Biol. Phys. 13:99–102.
  • Liboff, A. R. (2006), The ion cyclotron resonance hypothesis. In: Barnes, F. S., Greenebaum, B. Bioengineering and Biophysical Aspects of Electromagnetic Fields. Boca Raton: CRC Press. Chap 9, pp. 261–292.
  • Liboff, A. R. (2010). A role for the geomagnetic field in cell regulation. Electromag. Biol. Med. 29:105–112.
  • Liboff, A. R. (2014a). Why are living things sensitive to weak magnetic fields? Electromagn. Biol. Med. 33:241–245.
  • Liboff, A. R. (2014b). Medical problems arising from solar storms. In: Rosch, P. Bioelectromagnetic and Subtle Energy Medicine. Boca Raton: CRC Press. 2nd Edition, Chap 36, pp. 401–410.
  • Liboff, A. R. (2014c). Ion cyclotron resonance applications in medicine. In: Rosch, P. Bioelectromagnetic and Subtle Energy Medicine. Boca Raton: CRC Press. 2nd Edition, Chap 43, pp. 509–516.
  • Liboff, A. R. (2016a). Magnetic correlates in electromagnetic consciousness. Electromagn. Biol. Med. [in press]
  • Liboff, A. R. (2015b). Is the geomagnetic field imprinted in pre-emergent egg? Electromagn. Biol. Med. [in press] doi:10.3109/15368378.2015.1045069.
  • Liedvogel, M., Mouritsen, H. (2010). Cryptochromes—A potential magnetoreceptor: What do we know and what do we want to know? J. R. Soc. Interface 7:S147–S162.
  • Lovely, R. H., Creim, J. A., Miller, D. L., Anderson, L. E. (1993). Behavior of rats in a radial arm maze during exposure to magnetic fields: Evidence for effects of magnesium ion resonance (abstract). 15th Annual mtg, Bioelectromagnetics Soc., Los Angeles.
  • Lyskov, Y. B., Chernysev, M. V., Michailov, V. O., et al. (1996). The effect of a magnetic field with the frequency of 50 Hz on behavior in rats depends on the value of the constant magnetic field. Biophysics 41:881–886.
  • Manikonda, P. K., Rajendra, P., Devandraneth, D., et al. (2007). Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci. Lett. 413:145–149.
  • Marino, A. A., Nilsen, E., Chesson, A. L., Jr., Frilot, C. (2004). Effect of low-frequency magnetic fields on brain electrical activity in human subjects. Clin. Neurophysiol. 115:1195–1201.
  • McDonnell, A. (2014). The sixth sense-emotional contagion; review of biophysical mechanisms influencing information transfer in groups. J. Behav. Brain Sci. 4:342–374.
  • Mitsutaka, G., Otsuka, K., Hayakawa, M., et al. (2005). Does Schumann resonance affect our blood pressure? Biomed Pharmacother. 59:S10–S14.
  • Novikov, V. V., Fesenko, E. E. (2001). Hydrolysis of some peptides and proteins in a weak combined (constant and low-frequency variable) magnetic field. Biophysics 46:233–238.
  • Novikov, V. V., Novikov, G. V., Fesenko, E. E. (2009). Effect of weak combined static and extremely-low-frequency alternating magnetic fields on tumor growth in mice inoculated with the Ehrlich ascites carcinoma. Bioelectromagnetics 30:343–351.
  • Pazur, A. (2004). Characterization of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry. Biomagn. Res. Tech. 2:8. doi:10.1186/1477-04x-2-8.
  • Persinger, M. A. (2014). Schumann resonance frequencies found within quantitative electroencephalographic activity: Implications for earth-brain interactions. Int. Lett. Chem. Phys. Astron. 11:24–32.
  • Pockett, S. (2000). The Nature of Consciousness: A Hypothesis. New York: Wireless Club Press.
  • Pockett, S. (2012). The electromagnetic field theory of consciousness: A testable hypothesis about the characteristics of conscious as opposed to non-conscious fields. J Consciousness Stud. 19:191–223.
  • Reiter, R. J., Tan, D. X., Fuentes-Broto, L. (2010). Melatonin: A multitasking molecule. Prog. Brain Res. 181:127–151.
  • Roldugin, V. C., Rodugin, A. V., Pilgaev, S. V. (2013). Pc1-2 auroral pulsations. J. Geophys. Res. Space Phys. 118:74–81.
  • Rusov, V. D., Lukin, K. A., Zelentsova, T. N., et al. (2012). Can resonant oscillations of the earth ionosphere influence the human brain biorhythm? arXiv: 1208.4970[physics.gen-ph].
  • Simko, N. (2007). Cell type specific redox status is responsible for diverse electromagnetic field effects. Curr. Med. Chem. 14:1141–1157.
  • Sobel, E., Davanipour, Z. (1996). Electromagnetic field exposure may cause increased production of amyloid beta and eventually lead to Alzheimer’s disease. Neurology 47:1594–1600.
  • Thomas, J. R., Schrot, J., Liboff, A. R. (1986). Low-intensity magnetic fields alter operant behavior in rats. Bioelectromagnetics 7:349–357.
  • Vorobyov, V. V., Galchenko, A. A., Kukushkin, N. I., Akoev, I. G. (1997). Effects of weak microwave fields amplitude modulated at ELF on EEG of symmetric brain areas in rats. Bioelectromagnetics 18:293–298.
  • Vorobyov, V. V., Sosunov, E. A., Kukushkin, N. I., Lednev, V. V. (1998). Weak combined magnetic field affects basic and morphine-induced rat’s EEG. Brain Res. 781:182–187.
  • Vorobyov, V. V., Janac, B., Pesic, V., Prolic, Z. (2010). Repeated exposure to low-level extremely low frequency-modulated microwaves affects cortex-hypothalamus interplay in freely moving rats: EEG study. Int. J. Radiat. Biol. 86:376–383.
  • Welker, H. A., Semm, P., Willig, R. P., et al. (1983). Effects of an artificial magnetic field on Serotonin N-acetyl transferase activity and melatonin content of the pineal gland. Exp. Brain Res. 50:426–432.
  • Wertheimer, N., Leeper, E. (1979). Electrical wiring configurations and childhood cancer. Am. J. Epidem. 109:273–384.
  • Xu, D. (2012). The magnetic field produced by the heart and its influence on MRI [Ph.D. dissertation]. Rochester, MI: Oakland University
  • Zhadin, M. N., Novikov, V. V., Barnes, F. S., Pergola, N. F. (1998). Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solutions. Bioelectromagnetics 19:41–45.
  • Zhadin, M. N., Deryugina, O. N., Pisachenko, T. M. (1999). Influence of combined DC and AC magnetic fields on rat behavior. Bioelectromagnetics 20:378–386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.