226
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Choice of osteoblast model critical for studying the effects of electromagnetic stimulation on osteogenesis in vitro

, , &
Pages 353-364 | Received 15 Jul 2015, Accepted 07 Nov 2015, Published online: 29 Jun 2016

References

  • Aaron, R. K., Mc Ciombor, D. K. (1996). Acceleration of experimental endochondral ossification by biophysical stimulation of the progenitor cell pool. J. Orthop. Res. 14:582–589.
  • Barnaba, S., Papalia, R., Ruzzini, L., et al. (2013). Effect of Pulsed Electromagnetic Fields on Human Osteoblast Cultures. Physiother. Res. Int. 18:109–114.
  • Bassett, C. A., Pawluk, R. J., Pilla, A. A. (1974). Acceleration of fracture repair by electromagnetic fields: A surgically noninvasive method. Ann. N.Y. Acad. Sci. 238:242–262.
  • Benayahu, D., Shur, I., Marom, R., et al. (2002). Cellular and molecular properties associated with osteosarcoma cells. J. Cell. Biochem. 84:108–114.
  • Bodamyali, T., Bhatt, B., Hughes, F. J., et al. (1998). Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblastsin vitro. Biochem. Biophys. Res. Commun. 250:458–461.
  • Borsje, M. A., Ren, Y., de Haan-Visser, H. W., Kuijer, R. (2010). Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells. Angle Orthod. 80:498–503.
  • Carvalho, R. S., Schaffer, J. L., Gerstenfeld, L. C. (1998). Osteoblasts induce osteopontin expression in response to attachment on fibronectin: Demonstration of a common role for integrin receptors in the signal transduction processes of cell attachment and mechanical stimulation. J. Cell. Biochem. 70:376–390.
  • Chang, W. H., Chen, L., Sun, J., Lin, F. (2004). Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 25:457–465.
  • Cheng, G., Zhai, Y., Chen, K., et al. (2011). Sinusoidal electromagnetic field stimulates rat osteoblast differentiation and maturation via activation of NO–cGMP–PKG pathway. Nitric Oxide 25:316–325.
  • Clover, J., Gowen, M. (1994). Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone 15:585–591.
  • Czekanska, E. M., Stoddart, M. J., Ralphs, J. E., et al. (2014). A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J. Biomed. Mater. Res. A 102:2636–2643.
  • De Haas, W. G., Watson, J., Morrison, D. M. (1980). Non-invasive treatment of ununited fractures of the tibia using electrical stimulation. J. Bone Surg 62–B:465–470.
  • De Mattei, M., Caruso, A., Traina, G. C., et al. (1999). Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics 20:177–182.
  • Declercq, H., Van den Vreken, N., De Maeyer, E., et al. (2004). Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: Comparison of different isolation techniques and source. Biomaterials 25:757–768.
  • Diniz, P., Shomura, K., Soejima, K., Ito, G. (2002a). Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 23:398–405.
  • Diniz, P., Soejima, K., Ito, G. (2002b). Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide 7:18–23.
  • Emes, Y., Akça, K., Aybar, B., et al. (2013). Low-level laser therapy vs. pulsed electromagnetic field on neonatal rat calvarial osteoblast-like cells. Lasers Med. Sci. 28:901–909.
  • Esmail, M. Y., Sun, L., Yu, L., et al. (2012). Effects of PEMF and glucocorticoids on proliferation and differentiation of osteoblasts. Electromagn. Biol. Med. 31:375–381.
  • Esposito, M., Lucariello, A., Riccio, I., et al. (2012). Differentiation of human osteoprogenitor cells increases after treatment with pulsed electromagnetic fields. In Vivo 26:299–304.
  • Friedenberg, Z. B., Brighton, C. T. (1966). Bioelectric potentials in bone. J. Bone Joint Surg. 48–A, 915–923.
  • Fu, Y., Lin, C., Chang, J., et al. (2014). A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair. PLoS ONE. 9:e91581.
  • Fukada, E., Yasuda, I. (1957). On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 12:1158–1162.
  • Grace, K. (1998). The effects of pulsed electromagnetism on fresh fracture healing: Osteochondral repair in the rat femoral groove. Orthopedics. 21:297–302.
  • Hannay, G., Leavesley, D., Pearcy, M. (2005). Timing of pulsed electromagnetic field stimulation does not affect the promotion of bone cell development. Bioelectromagnetics. 26:670–676.
  • Hinsenkamp, M. (1978). Electromagnetic stimulation of fracture repair: Influence on healing of fresh fractures. Acta Orthop. Belg. 44:671–698.
  • Jaiswal, N., Haynesworth, S. E., Caplan, A. I., Bruder, S. P. (1997). Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64:295–312.
  • Jansen, J. H., van der Jagt, O. P., Punt, B. J., et al. (2010). Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: An in vitro study. BMC Musculoskeletal Disorders 11:188.
  • Jukkola, A., Risteli, L., Melkko, J., Risteli, J. (1993). Procollagen synthesis and extracellular matrix deposition in MG-63 osteosarcoma cells. J. Bone Miner. Res. 8:651–657.
  • Kaivosoja, E., Sariola, V., Chen, Y., Konttinen, Y. T. (2015). The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells. J. Tissue Eng. Regen. Med. 9:31–40.
  • Kamolmatyakul, S., Jinorose, U., Prinyaroj, P., & Li, Y. (2008). Responses of human normal osteoblast cells and osteoblast-like cell line, MG-63 cells, to pulse electromagnetic field (PEMF). Songklanakarin J. Sci. & Tech. 30:25–29.
  • Kern, S., Eichler, H., Stoeve, J., et al. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301.
  • Ledda, M., D’Emilia, E., Giuliani, L., et al. (2014). Nonpulsed sinusoidal electromagnetic fields as a noninvasive strategy in bone repair: The effect on human mesenchymal stem cell osteogenic differentiation. Tissue Eng. Part C: Methods. 21:207–217.
  • Li, K., Ma, S., Li, Y., et al. (2014). Effects of PEMF exposure at different pulses on osteogenesis of MC3T3-E1 cells. Arch. Oral Biol. 59:921–927.
  • Lim, K., Hexiu, J., Kim, J., et al. (2013). Effects of electromagnetic fields on osteogenesis of human alveolar bone-derived mesenchymal stem cells. BioMed. Res. Int. 2013:14.
  • Liu, C., Yu, J., Yang, Y., et al. (2013). Effect of 1 mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells. Bioelectromagnetics. 34:453–464.
  • Lohmann, C. H., Schwartz, Z., Liu, Y., Guerkov, H., Dean, D. D., Simon, B., & Boyan, B. D. (2000). Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J. Ortho. Res. 18:637–646.
  • Mareschi, K., Biasin, E., Piacibello, W., et al. (2001). Isolation of human mesenchymal stem cells: Bone marrow versus umbilical cord blood. Haematologica. 86:1099–1100.
  • Martino, C. F., Belchenko, D., Ferguson, V., et al. (2008). The effects of pulsed electromagnetic fields on the cellular activity of SaOS-2 Cells. Bioelectromagnetics. 29:125–132.
  • McBeath, R., Pirone, D. M., Nelson, C. M., et al. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell. 6:483–495.
  • McLeod, K. J., Collazo, L. (2000). Suppression of a differentiation response in MC-3T3-E1 osteoblast-like cells by sustained, low-level, 30 Hz magnetic-field exposure. Radiat. Res. 153:706–714.
  • Miyagi, N., Sato, K., Rong, Y., et al. (2000). Effects of PEMF on a murine osteosarcoma cell line: Drug-resistant (P-glycoprotein-positive) and non-resistant cells. Bioelectromagnetics. 21:112–121.
  • Murray, E., Provvedini, D., Curran, D., et al. (1987). Characterization of a human osteoblastic osteosarcoma cell line (SAOS-2) with high bone alkaline phosphatase activity. J. Bone Miner. Res. 2:231–238.
  • Norton, L. (1982). Effects of a pulsed electromagnetic field on a mixed chondroblastic tissue culture. Clin. Orthop. 167:280–289.
  • Ongaro, A., Pellati, A., Bagheri, L., et al. (2014). Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics. 35:426–436.
  • Pautke, C., Schieker, M., Tischer, T., et al. (2004). Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 24:3743–3748.
  • Prideaux, M., Wijenayaka, A., Kumarasinghe, D., et al. (2014). SaOS2 osteosarcoma cells as an in vitro model for studying the transition of human osteoblasts to osteocytes. Calcif. Tissue Int. 95:183–193.
  • Prince, M., Banerjee, C., Javed, A., et al. (2001). Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts*. J. Cell. Biochem. 80:424–440.
  • Quarles, L. D., Yohay, D. A., Lever, L. W., et al. (1992). Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: An in vitro model of osteoblast development. J. Bone Miner. Res. 7:683–692.
  • Rodan, S. B., Imai, Y., Thiede, M. A., et al. (1987). Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res. 47:4961–4966.
  • Saldaña, L., Bensiamar, F., Boré, A., Vilaboa, N. (2011). In search of representative models of human bone-forming cells for cytocompatibility studies. Acta Biomaterialia. 7:4210–4221.
  • Schwartz, Z., Simon, B. J., Duran, M. A., et al. (2008). Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J. Orthop. Res. 26:1250–1255.
  • Schwartz, Z., Fisher, M., Lohmann, C., et al. (2009). Osteoprotegerin (OPG) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates. Ann. Biomed. Eng. 37:437–444.
  • Selvamurugan, N., Kwok, S., Vasilov, A., et al. (2007). Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J. Orthop. Res. 25:1213–1220.
  • Siggelkow, H., Rebenstorff, K., Kurre, W., et al. (1999). Development of the osteoblast phenotype in primary human osteoblasts in culture: Comparison with rat calvarial cells in osteoblast differentiation. J. Cell. Biochem. 75:22–35.
  • Sollazzo, V., Traina, G., De Mattei, M., et al. (1999). Responses of human MG-63 osteosarcoma cell line and human osteoblast-like cells to pulsed electromagnetic fields. In Electricity Magnetism Biol. Med., pp. 453–456.
  • Sollazzo, V., Palmieri, A., Pezzetti, F., Massari, L., Carinci, F., et al. (2010). Effects of pulsed electromagnetic fields on human osteoblast like cells (MG-63): a pilot study. Clin. Ortho. and Related Res. 468:2260–2277.
  • Soda, A., Ikehara, T., Kinouchi, Y., Yoshizaki, K. (2008). Effect of exposure to an extremely low frequency-electromagnetic field on the cellular collagen with respect to signaling pathways in osteoblast-like cells. J. Med. Investigation. 55:267–278.
  • Song, M., Zhao, D., Wei, S., et al. (2014). The effect of electromagnetic fields on the proliferation and the osteogenic or adipogenic differentiation of mesenchymal stem cells modulated by dexamethasone. Bioelectromagnetics. 35:479–490.
  • Spreafico, A., Frediani, B., Capperucci, C., et al. (2006). A proteomic study on human osteoblastic cells proliferation and differentiation. Proteomics. 6:3520–3532.
  • Sun, L., Hsieh, D., Lin, P., et al. (2010). Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bioelectromagnetics. 31:209–219.
  • Sun, L., Hsieh, D., Yu, T., et al. (2009). Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics. 30:251–260.
  • Team, R. (2014). R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria.
  • Thomas, C. H., Collier, J. H., Sfeir, C. S., Healy, K. E. (2002). Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl. Acad. Sci. U.S.A. 99:1972–1977.
  • Torricelli, P., Fini, M., Giavaresi, G., et al. (2003). Comparative interspecies investigation on osteoblast cultures: Data on cell viability and synthetic activity. Biomed. Pharmacother. 57:57–62.
  • Tsai, M., Li, W., Tuan, R. S., Chang, W. H. (2009). Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. J. Orthop. Res. 27:1169–1174.
  • Wei, Y., Xiaolin, H., Tao, S. (2008). Effects of extremely low-frequency-pulsed electromagnetic field on different-derived osteoblast-like cells. Electromagn. Biol. Med. 27:298–311.
  • Yang, Y., Tao, C., Zhao, D., et al. (2010). EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics. 31:277–285.
  • Zhong, C., Zhang, X., Xu, Z., He, R. (2012). Effects of low-intensity electromagnetic fields on the proliferation and differentiation of cultured mouse bone marrow stromal cells. Phys. Ther. 92:1208–1219.
  • Zhou, J., Ming, L., Ge, B., et al. (2011). Effects of 50 Hz Sinusoidal electromagnetic fields of different intensities on proliferation, differentiation and mineralization potentials of rat osteoblasts. Bone. 49:753–761.
  • Zhou, J., Wang, J., Ge, B., et al. (2014). Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro. Bioelectromagnetics. 35:30–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.