5
Views
25
CrossRef citations to date
0
Altmetric
Original Article

Clinical and Applied Aspects of Magnetic Field Exposure: Possible Role for the Endogenous Opioid Systems

&
Pages 189-208 | Published online: 07 Jul 2009

References

  • Adey W. R. Tissue interactions with nonionizing electromagnetic fields. Physiol. Rev. 1981; 61: 435–513
  • Persinger M. A., Ludwig H. W., Ossenkopp K. ‐P. Psycho‐physiological effects of extremely low frequency electromagnetic fields: A review. Percept. Motor Skills 1973; 36: 1131–1159
  • Gould J. L. Magnetic field sensitivity in animals. Ann. Rev. Physiol. 1984; 46: 585–598
  • Keeton W. T. Avian orientation and navigation. Ann. Rev. Physiol. 1979; 41: 353–366
  • Ossenkopp K. ‐P., Barbeito R. Bird orientation and the geomagnetic field A review. Neurosci. Biobehav. Rev. 1978; 2: 255–279
  • Wiltschko W. The earth's magnetic field and bird orientation. Trends Neurosci. 1980; 3: 140–144
  • Becker R. O. Electromagnetic controls over biological growth processes. J. Bioelectricity 1984; 3: 105–121
  • Bawin S. M., Adey W. R. Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc. Natl. Acad. Sci. (US) 1976; 73: 1999–2003
  • Bawin S. M., Adey W. R., Sabbot I. M. Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. Proc. Natl. Acad. Sci. (US) 1978; 75: 6314–6318
  • Blackman C. F., Benane S. G., Kinney L. S., Joines W. T., House D. E. Effects of ELF fields on calcium‐ion efflux from brain tisue in vitro. Radiat. Res. 1982; 92: 510–520
  • Blackman C. F., Benane S. G., Joines W. T. Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bio‐electromagnetics 1985; 6: 1–11
  • Blackman C. F. The biological influences of low frequency sinusoidal electromagnetic signals alone and superimposed on RF carrier waves. Interactions between Electromagnetic Fields and Cells, A. Chiabrera, C. Nicolini, H. P. Schwan. Plenum, New York 1985; 521–535
  • Wever R. ELF‐effects on human circadian rhythms. ELF and VLF Electromagnetic Field Effects, M. A. Persinger. Plenum, New York 1974; 101–144
  • Brown F. A., Scow K. M. Magnetic induction of a circadian cycle in hamsters. J. Interdiscipl. Cycle Res. 1978; 9: 137–145
  • Cremer‐Bartels G., Krause K., Mitoskas G., Brodersen D. Magnetic field of the earth as additional zeitgeber for endogenous rhythms. Naturwissenschaften 1984; 71: 567–574
  • Semm P., Schneider T., Vollrath L. Effects of an earth‐strength magnetic field on electrical activity of pineal cells. Nature 1980; 288: 607–608
  • Welker H. A., Semm P., Willig R. P., Commentz J. C., Wiltschko W., Vollrath L. Effects of an artificial magnetic field on serotonin N‐acetyltransferase activity and melatonin content of the rat pineal gland. Exp. Brain Res. 1983; 50: 426–432
  • Reuss St., Semm P., Vollrath L. Different types of magnetically sensitive cells in the rat pineal gland. Neurosci. Lett. 1983; 40: 23–26
  • Cremer‐Bartels G., Krause K., Küchle H. J. Influence of low magnetic‐field‐strength variations on the retina and pineal gland of quail and humans. Graefe's Arch. Clin. Exp. Ophthalmol. 1983; 220: 248–252
  • Demaine C., Semm P. The avian pineal gland as an independent magnetic sensor. Neurosci. Lett. 1985; 62: 119–122
  • Ossenkopp K. ‐P., Ossenkopp M. D. Geophysical variables and behavior XI. Open‐field behaviors in young rats exposed to an ELF rotating magnetic field. Psychol. Rep. 1983; 52: 343–350
  • Persinger M. A., Persinger M., Ossenkopp K. ‐P., Glavin G. B. Behavioral changes in adult rats exposed to magnetic fields. Int. J. Biometeorol. 1972; 16: 155–162
  • Persinger M. A., Lafrenier G. F., Ossenkopp K. ‐P. Behavioral, physiological and histological changes in rats exposed during various developmental stages to ELF magnetic fields. ELF and VLF Electromagnetic Field Effects, M. A. Persinger. Plenum, New York 1974; 177–225
  • Persinger M. A., Glavin G. B., Ossenkopp K. ‐P. Physiological changes in adult rats exposed to an ELF rotating magnetic field. Int. J. Biometeorol. 1972; 16: 163–172
  • Semm P. Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp. Biochem. Physiol. 1983; 76‐A: 683–689
  • Morris R. W., Lutsch E. F. Susceptibility to morphine‐induced analgesia in mice. Nature 1967; 216: 493–494
  • Morris R. W., Lutsch E. F. Daily susceptibility rhythm to morphine analgesia. J. Pharmaceut. Sci. 1969; 58: 374–376
  • Lutsch E. F., Morris R. W. Light reversal of a morphine‐induced analgesia susceptibility rhythm in mice. Experentia 1971; 27: 420–421
  • Kavaliers M., Hirst M., Teskey G. C. Ageing, opioid analgesia and the pineal gland. Life Sci. 1983; 32: 2279–2287
  • Persinger M. A., Pear J. J. Prenatal exposure to an ELF‐rotating magnetic field and subsequent increase in conditioned suppression. Develop. Psychobiol. 1972; 5: 269–274
  • Kavaliers M., Ossenkopp K. ‐P., Hirst M. Magnetic fields abolish the enhanced nocturnal analgesic response to morphine in mice. Physiol. Behav. 1984; 32: 261–264
  • Kavaliers M., Ossenkopp K. ‐P. Effects of 0.5 Hz and 60 Hz magnetic fields on morphine‐induced behavioral changes in mice. Soc. Neurosci. Abstr. 1984; 10: 1104
  • Kavaliers M., Ossenkopp K. ‐P. Exposure to rotating magnetic fields alters morphine‐induced behavioral responses in two strains of mice. Neuropharmacol. 1985; 24: 337–340
  • Miller D. B., Blackman C. F., Ali J. S. Behavioral responses of morphine‐treated mice to ELF magnetic fields. Abstr. Bioelectromag. Soc. 1985; 54
  • Ossenkopp K. ‐P., Kavaliers M. Morphine‐induced analgesia and exposure to low intensity 60‐Hz magnetic fields: Inhibition of nocturnal analgesia in mice is a function of magnetic field intensity. Brain Res. 1987; 418: 356–360
  • Kavaliers M., Ossenkopp K. ‐P. Magnetic fields differentially inhibit mu, delta, kappa and sigma opiate‐induced analgesia in mice. Peptides 1986; 7: 449–453
  • Kavaliers M., Ossenkopp K. ‐P. Tolerance to morphine induced analgesia in mice: Magnetic fields function as environmental specific cues and reduce tolerance development. Life Sci. 1985; 37: 1125–1135
  • Siegel S. Morphine analgesic tolerance: Its situation specificity supports a Pavlovian conditioning model. Science 1976; 193: 323–325
  • Siegel S., Macrae J. Environmental specificity of tolerance. Trends Neurosci. 1984; 7: 140–143
  • Kavaliers M., Ossenkopp K. ‐P. Magnetic fields as environmental specific cues for morphine‐induced analgesia: Interactions with tolerance development. Prog. Neuro‐Psychopharm. Biol. Psychiat. 1985; 9: 745–748
  • Akil H., Watson S. J., Young E., Lewis M. E., Khachaturian H., Walker J. M. Endogenous opioids: Biology and function. Ann. Rev. Neurosci. 1984; 7: 223–255
  • Bodnar R. J., Kelly D. D., Brutus M., Glasman M. Stress‐induced analgesia: Neural and hormonal determinants. Neurosci. Biobehav. Rev. 1980; 4: 87–100
  • Ossenkopp K. ‐P., Bettin M. A., Kavaliers M. Body‐rotation‐induced analgesia in mice: Evidence for opioid involvement. Fed. Proc. 1986; 45: 429
  • Kavaliers M., Ossenkopp K. ‐P. Stress‐induced opioid analgesia and activity in mice: Inhibitory influences of exposure to magnetic fields. Psychopharmacol. 1986; 89: 440–443
  • Kavaliers M., Ossenkopp K. ‐P. Magnetic fields and stress: Day‐night differences. Prog. Neuro‐Psychopharm. Biol. Psychiat. 1987; 11: 279–286
  • Semm P., Nohr D., Demaine C., Wiltschko W. Neural basis of the magnetic compass: Interactions of visual, magnetic and vestibular inputs in the pigeon's brain. J. Comp. Physiol. 1984; 155: 283–288
  • Semm P. Neurobiologische Untersuchungen zur magneti‐schen Empfindlichkeit des Pinealorgans (Epiphysis cerebri). Funkt. Biol. Med. 1982; 1: 207–213
  • Lakin M. L., Miller C. H., Stott M. L., Winters W. D. Involvement of the pineal gland and melatonin in murine analgesia. Life Sci. 1981; 29: 2543–2551
  • Olcese J., Reuss S., Vollrath L. Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat. Brain Res. 1985; 333: 382–384
  • Reuss S., Olcese J. Magnetic field effects on the rat pineal gland: Role of retinal activation by light. Neurosci. Lett. 1986; 64: 97–101
  • Golding G. P., Newboult L., Rees J. M. H., Varlow B. R. The effects of 50 Hz magnetic fields on opioid peptide mediated inhibition of guinea pig ileum. Neuropeptides 1985; 5: 357–358
  • Kavaliers M., Hirst M., Teskey G. C. Opioid‐induced feeding in the slug, Limax maximus. Physiol. Behav. 1984; 33: 765–767
  • Kavaliers M., Ossenkopp K. ‐P., Mathers A. Magnetic fields inhibit opioid‐induced feeding in the slug, Limax maximus. Pharm. Biochem. Behav. 1985; 23: 727–730
  • Dixey D. R., Rein G. 3H‐noradrenaline release potentiated in a clonal cell line by low intensity pulsed magnetic fields. Nature 1982; 206: 253–256
  • Seegal R. F. Exposure to 60 Hz electric and magnetic fields alters biogenic amine metabolite concentrations in non‐human primate cerebrospinal fluid. Soc. Neurosci. Abstr. 1985; 11: 443
  • Hayek A., Guardian C., Guardian J., Obarski G. Homogenous magnetic fields influence pancreatic islet function in vitro. Biochem. Biophys. Res. Commun. 1984; 122: 191–196
  • Conti P., Giganto G. E., CiFone M. G., Alesse E. Effects of electromagnetic fields on two calcium dependent biological systems. J. Bioelectricity 1985; 4: 227–236
  • Blackman C. F., Benane S. G., Rabinowitz J. R., House D. R., Joines W. T. A role for the magnetic field in the radiation‐induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 1985; 6: 327–337
  • Kavaliers M., Ossenkopp K. ‐P. Magnetic field inhibition of morphine‐induced analgesia and behavioral activity in mice: Evidence for involvement of calcium ions. Brain Res. 1986; 379: 30–38
  • Harris R. A., Loh H. H., Way E. L. Effect of divalent cations, cation chelators and an ionophore on morphine analgesia and tolerance. J. Pharmacol. Exp. Therap. 1975; 195: 488–498
  • Kakunaga T., Kaneto H., Hanho K. Pharmacologic studies on analgesics. VII. Significance of the calcium ion in morphine analgesia. J. Pharmacol. Exp. Therap. 1966; 153: 134–141
  • Fullerton G. D. Basic concepts for nuclear magnetic resonance imaging. Magn. Reson. Imag. 1982; 1: 39–53
  • Bottomley P. A., Hart H. R., Edelstein W. E., Schenk J. F., Smith L. S., Leue W. M., Mueller O. M., Redington T. R. Anatomy and metabolism of the normal brain studied by magnetic resonance at 1.5 T. Radiology 1984; 250: 441–446
  • Prasad N., Bushong S. C., Thornby J. I., Bryan R. N., Hazlewood C. F., Harrell J. E. Effects of nuclear magnetic resonance on chromosomes of mouse bone marrow cells. Magn. Reson. Imag. 1984; 2: 37–39
  • Wolff S., James T. L., Young G. B., Margulis A. R., Bodycote J., Afzal V. Magnetic resonance imaging: Absence of in vitro cytogenetic damage. Radiology 1985; 155: 163–165
  • Prasad N., Wright D. A., Forster J. D. Effect of nuclear magnetic resonance on early stages of amphibian development. Magn. Reson. Imag. 1982; 1: 3537
  • Gore J. C., McDonnell M. J., Pennock J. M., Stanbrook H. S. An assessment of the safety of rapidly changing magnetic fields in the rabbit: Implications for NMR imaging. Magn. Reson. Imag. 1982; 1: 191–195
  • Willis R. J., Brooks W. M. Potential hazards of NMR imaging: No evidence of the possible effects of static and changing magnetic fields on cardiac function of the rat and guinea pig. Magn. Reson. Imag. 1985; 2: 89–95
  • Ossenkopp K. ‐P., Innis N. K., Prato F. S., Sestini E. Behavioral effects of exposure to nuclear magnetic resonance imaging: I. Open‐field behavior and passive avoidance learning in rats. Magn. Reson. Imag. 1986; 4: 275–280
  • Innis N. K., Ossenkopp K. ‐P., Prato F. S., Sestini E. Behavioral effects of exposure to nuclear magnetic resonance imaging: II. Spatial memory tests. Magn. Reson. Imag. 1986; 4: 281–284
  • Ossenkopp K. ‐P., Kavaliers M., Prato F. S., Teskey G. C., Sestini E., Hirst M. Exposure to nuclear magnetic resonance imaging procedures attenuates morphine‐induced analgesia in mice. Life Sci. 1985; 37: 1507–1514
  • Prato F. S., Ossenkopp K. ‐P., Kavaliers M., Sestini E. Magnetic resonance imaging and morphine‐induced analgesia: Some temporal effects of the time varying magnetic field. Soc. Neurosci. Abstr. 1985; 23: 1280
  • Prato F. S., Ossenkopp K. ‐P., Kavaliers M., Sestini E. Attenuation of morphine‐induced analgesia in mice by exposure to magnetic resonance imaging: Separate effects of the static, radiofrequency and time‐varying magnetic fields. Magn. Reson. Imag. 1987; 5: 9–14
  • Delgado J. M. R., Leal J., Monteagudo J. L., Garcia M. G. Embryological changes induced by weak, extremely low frequency electromagnetic fields. J. Anat. 1982; 134: 533–551
  • Ubeda A., Leal J., Trillo M. A., Jimenez M. A., Delgado J. M. R. Pulse shape of magnetic fields influences chick embryogenesis. J. Anat. 1983; 137: 513–536
  • Cameron I. L., Hunter K. E., Winters W. D. Retardation of embryogenesis by extremely low frequency 60 Hz electromagnetic fields. Physiol. Chem. Phys. Med. NMR 1985; 17: 135–138
  • Delgado J. M. R. Biological effects of extremely low frequency electromagnetic fields. J. Bioelectricity 1985; 4: 75–91
  • Persinger M. A. Open‐field behavior in rats exposed prenatally to a low‐intensity low‐frequency, rotating magnetic field. Develop. Psychobiol. 1969; 2: 168–171
  • Ossenkopp K. ‐P. Maturation and open‐field behavior in rats exposed prenatally to an ELF low‐intensity rotating magnetic field. Psychol. Rept. 1972; 30: 371–374
  • Ossenkopp K. ‐P., Koltek W. T., Persinger M. A. Prenatal exposure to an extremely low frequency low‐intensity rotating magnetic field and increases in thyroid and testicle weight in rats. Develop. Psychobiol. 1972; 5: 275–285
  • Zagon I. S., McLaughlin P. J. Duration of opiate receptor blockage determines the extent of body and brain development in rats: A new role of endogenous opioid systems. Soc. Neurosci. Abstr. 1984; 10: 929
  • Zagon I. S., McLaughlin P. J. Naltrexone modulates body and brain development in rats: A role for endogenous opioid systems in growth. Life Sci. 1984; 35: 2057–2064
  • Bassett C. A. L., Pawluk R. J., Pilla A. A. Augmentation of bone repair by inductively coupled electromagnetic fields. Science 1974; 184: 575–577
  • Bassett C. A. L., Pawluk R. J., Pilla A. A. Acceleration of fracture repair by electromagnetic fields, A surgically non‐invasive method. Ann. N. Y. Acad. Sci. 1974; 238: 242–249
  • Garcia P. G., de la Cal A. M. Enhancement of bone healing by an exogenous magnetic field and the magnetic vaccine. J. Biomed. Eng. 1985; 7: 157–160
  • Murray J. C., Farndale R. W. Modulation of collagen production in cultured fibroblasts by a low‐frequency pulsed magnetic field. Biochem. Biophys. Acta. 1985; 838: 98–105
  • Wertheimer N., Leeper E. Electrical wiring configuration and childhood cancer. Am. J. Epidemiol. 1979; 109: 273–284
  • Wertheimer N., Leeper E. Adult cancer related to electrical wires near the home. Int. J. Epidemiol. 1982; 11: 354–355
  • Gilman P. A., Ames R. G., McCawley M. A. Leukemia risk among US. white male coal miners. J. Occupat. Med. 1985; 27: 669–671
  • Milham S. Mortality from leukemia in workers exposed to electrical and magnetic fields. N. Engl. J. Med. 1982; 307: 249
  • Lin R. S., Dischinger P. C., Conde J., Farrell K. P. Occupational exposure to electromagnetic fields and the occurrence of brain tumors. J. Occupat. Med. 1985; 27: 413–419
  • Easterly C. E. Cancer link to magnetic field exposure: A hypothesis. Am. J. Epidemiol. 1981; 114: 169–174
  • Zagon I. S., McLaughlin P. J. Duration of opiate receptor blockade determines tumorigenic response in mice with neuroblastoma: A role for endogenous opioid systems in cancer. Life Sci. 1984; 35: 409–416
  • Zagon I. S., McLaughlin P. J. Naltrexone modulates tumor response in mice with neuroblastoma. Science 1983; 221: 671–673
  • Barregard L., Jarvholm B., Ungethum E. Cancer among workers exposed to strong static magnetic fields. Lancet 1985; ii: 892
  • Keshavan M. S., Gangadhar B. N., Gautam R. U., Agit V. B., Kapur R. L. Convulsive threshold in humans and rats and magnetic field changes: Observations during total solar eclipse. Neurosci. Lett. 1981; 22: 205–208
  • Rajaram M., Mitra S. Correlation between convulsive seizure and geomagnetic activity. Neurosci. Lett. 1981; 24: 187–191
  • Antimonii G. D., Salamov R. A. Action of a modulated electromagnetic field on experimentally evoked epileptiform brain activity in rats. Byull. Eksper. Biol. Med. 1980; 89: 145–148
  • Ossenkopp K. ‐P., Cain D. P., Smith S. Low intensity 60‐Hz magnetic fields and epilepsy: Reduced incidence of lethal pentylenetetrazol induced seizures in rats pre‐exposed to fields. Soc. Neurosci. Abstr. 1985; 11: 1280
  • Ossenkopp K. ‐P., Cain D. P. Inhibitory effects of acute exposure to low‐intensity 60‐Hz magnetic fields on electrically kindled seizures in rats. Brain Res. 1988; 442: 255–260
  • Frenk H. Pro‐ and anticonvulsant actions of morphine and interactions of multiple opiate and non‐opiate systems. Brain Res. Rev. 1983; 6: 197–210
  • Stone W. S., Eggleton C. E., Berman R. F. Opiate modification of amygdaloid‐kindled seizure in rats. Pharm. Biochem. Behav. 1982; 16: 751–756
  • Wallenstein M. Effect of morphine pretreatment on pentylenetetrazol‐induced seizures in the rat. Neuropharmacol. 1983; 22: 1187–1192
  • Cain D. P., Corcoran M. E. Epileptiform effects of Met‐enkephalin, P‐endorphin and morphine: Kindling of generalized seizures and potentiation of epileptiform effects by handling. Brain Res. 1985; 338: 327–336
  • Wertheimer N., Leeper E. Possible effects of electric blankets and heated waterbeds on fetal development. Bio‐electromagnetics 1986; 7: 13–22
  • Barker A. T., Jalinous R., Freeston I. L. Non‐invasive magnetic stimulation of human motor cortex. Lancet 1985; ii: 1106–1107
  • Barker A. T., Freeston I. L., Jalinous R., Jarratt J. A. Magnetic stimulation of the human brain and peripheral nervous system: An introduction and the results of an initial clinical evaluation. Neurosurgery 1987; 20: 100–109
  • Ossenkopp K. ‐P., Kavaliers M., Hirst M. Reduced nocturnal morphine analgesia in mice following a geomagnetic disturbance. Neurosci. Lett. 1983; 40: 321–325
  • Henry J. L. Circulating opioids: Possible physiological roles in central nervous function. Neurosci. Biobehav. Rev. 1982; 6: 229–245

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.