280
Views
45
CrossRef citations to date
0
Altmetric
Research Article

Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells

, , &
Pages 644-653 | Received 02 Jul 2014, Accepted 16 Aug 2014, Published online: 03 Sep 2014

References

  • Alarifi S, Ali D, Alkahtani S, et al. (2013). Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine 8:983–93
  • Arora S, Rajwade JM, Paknikar MK. (2012). Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharm 258:151–65
  • Belmar-Lopez C, Mendoza G, Oberg D, et al. (2013). Tissue-derived mesenchymal stromal cells used as vehicles for anti-tumor therapy exert different in vivo effects on migration capacity and tumor growth. BMC Med 11:139
  • Brayner R, Ferrari-lliou R, Brivois N, et al. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–70
  • Cho WS, Duffin R, Thielbeer F, et al. (2012). Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126:469–77
  • Chung HE, Yu J, Baek M, et al. (2013). Toxicokinetics of zinc oxide nanoparticles in rats. J Phys Conf Ser 429:1–7. doi:10.1088/1742-6596/429/1/012037
  • Donaldson K, Stone V, Tran CL, et al. (2004). Nanotoxicology. Occup Environ Med 61:727–8
  • Franklin NM, Rogers NJ, Apte SC, et al. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–90
  • Kelleher P, Pacheco K, Newman LS. (2000). Inorganic dust pneumonias: the metal-related parenchymal disorders. Environ Health Perspect 108:685–96
  • Kroemer G, Jaattela M. (2005). Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–97
  • Kumar A, Pandey AK, Singh SS, et al. (2011). Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Bio Med 51:1872–81
  • Long TC, Tajuba J, Sama P, et al. (2007). Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 115:1631–7
  • Moghaddam AM, Nazari T, Badraghi J, Kazemzad M. (2009). Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int J Electrochem Sci 4:247–57
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63
  • Oberdorster G, Oberdorster E, Oberdorster J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–39
  • Osmond MJ, McCall MJ. (2010). Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4:15–41
  • Pujalte I, Passagne I, Brouillaud B, et al. (2011). Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10 . doi: 10.1186/1743-8977-8-10
  • Remya NS, Syama S, Gayathri V, Mohanan PV. (2014). An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behavior. Colloids Surf B Biointerfaces 117:389–97
  • Salata OV. (2004). Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2:3. doi:10.1186/1477-3155-2-3
  • SCCS/1489/12. (2012). Opinion on zinc oxide nanoform – COLIPA S 76. Available from: http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_103.pdf [last accessed 2 Sep 2014]
  • Sharma V, Anderson D, Dhawan A. (2012). Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–70
  • Sharma V, Shukla RK, Saxena N, et al. (2009). DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–18
  • Slee EA, Harte MT, Kluck RM, et al. (1999). Ordering the cytochrome C-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144:281–92
  • Sohaebuddin SK, Thevenot PT, Baker D, et al. (2010). Nanomaterial Cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22. doi:10.1186/1743-8977-7-22
  • Studeny M, Marini FC, Champlin RE, et al. (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–8
  • Taccola L, Raffa V, Riggio C, et al. (2011). Zinc oxide nanoparticles as selective killers of proliferating cells. Int J Nanomedicine 6:1129–40
  • Vasir JK, Reddy MK, Labhasetwar VD. (2005). Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 1:47–64
  • Xia T, Kovochich M, Liong M, et al. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.