306
Views
36
CrossRef citations to date
0
Altmetric
Research Article

Mast cell accumulation precedes tissue fibrosis induced by intravenously administered amorphous silica nanoparticles

, , , , , & show all
Pages 260-269 | Received 07 Dec 2015, Accepted 18 Mar 2016, Published online: 08 Apr 2016

References

  • Akers IA, Parsons M, Hill MR, et al. (2000). Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol 278:L193–201.
  • Cho WS, Choi M, Han BS, et al. (2007). Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett 175:24–33.
  • Choudat D, Frisch C, Barrat G, et al. (1990). Occupational exposure to amorphous silica dust and pulmonary function. Br J Ind Med 47:763–6.
  • Dai L, Li J, Zhang B, et al. (2014). Redox-responsive nanocarrier based on heparin end-capped mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Langmuir 30:7867–77.
  • Du Z, Zhao D, Jing L, et al. (2013). Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation. Cardiovasc Toxicol 13:194–207.
  • Galagudza M, Korolev D, Postnov V, et al. (2012). Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles. Int J Nanomedicine 7:1671–8.
  • Galagudza M, Korolev D, Sonin D, et al. (2010). Targeted drug delivery to ischemic heart with use of nanoparticulate carriers: concepts, pitfalls and perspectives. J Manufact Technol Manag 21:930–49.
  • Gruber BL, Kew RR, Jelaska A, et al. (1997). Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J Immunol 158:2310–17.
  • Guo J, Shi T, Cui X, et al. (2014). Effects of silica exposure on the cardiac and renal inflammatory and fibrotic response and the antagonistic role of interleukin-1 beta in C57BL/6 mice. Arch Toxicol 90:247–58.
  • Herd HL, Bartlett KT, Gustafson JA, et al. (2015). Macrophage silica nanoparticle response is phenotypically dependent. Biomaterials 53:574–82.
  • Ivanov S, Zhuravsky S, Yukina G, et al. (2012). In vivo toxicity of intravenously administered silica and silicon nanoparticles. Materials 5:1873–89.
  • Koole R, van Schooneveld MM, Hilhorst J, et al. (2008). Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging. Bioconjug Chem 19:2471–9.
  • Kumar R, Roy I, Ohulchanskky TY, et al. (2010). In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4:699–708.
  • Leung CC, Yu IT, Chen W. (2012). Silicosis. Lancet 379:2008–18.
  • Li L, Liu T, Fu C, et al. (2014). Multifunctional silica-based nanocomposites for cancer nanotheranostics. J Biomed Nanotechnol 10:1784–809.
  • Liu T, Li L, Fu C, et al. (2012). Pathological mechanisms of liver injury caused by continuous intraperitoneal injection of silica nanoparticles. Biomaterials 33:2399–407.
  • Lu X, Ji C, Jin T, Fan X. (2015). The effects of size and surface modification of amorphous silica particles on biodistribution and liver metabolism in mice. Nanotechnology 26:175101
  • Malvindi MA, Brunetti V, Vecchio G, et al. (2012). SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing. Nanoscale 4:486–95.
  • Nafisi S, Schäfer-Korting M, Maibach HI. (2015). Perspectives on percutaneous penetration: silica nanoparticles. Nanotoxicology 9:643–57.
  • Napierska D, Thomassen LC, Lison D, et al. (2010). The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39
  • Nemmar A, Albarwani S, Beegam S, et al. (2014). Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation. Int J Nanomedicine 9:2779–89.
  • Overed-Sayer C, Rapley L, Mustelin T, Clarke DL. (2014). Are mast cells instrumental for fibrotic diseases? Front Pharmacol 4:174
  • Peng J, He X, Wang K, et al. (2006). An antisense oligonucleotide carrier based on amino silica nanoparticles for antisense inhibition of cancer cells. Nanomedicine 2:113–20.
  • Pesci A, Bertorelli G, Gabrielli M, Olivieri D. (1993). Mast cells in fibrotic lung disorders. Chest 103:989–96.
  • Siddique A, Kowdley KV. (2012). Approach to a patient with elevated serum alkaline phosphatase. Clin Liver Dis 16:199–229.
  • Slowing II, Vivero-Escoto JL, Wu CV, Lin VS. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–88.
  • Sun L, Li Y, Liu X, et al. (2011). Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol in Vitro 25:1619–29.
  • Suzuki N, Horiuchi T, Ohta K. Yamaguchi, et al. (1993). Mast cells are essential for the full development of silica-induced pulmonary inflammation: a study with mast cell-deficient mice. Am J Respir Cell Mol Biol 9:475–83.
  • Tacke F, Zimmermann HW. (2014). Macrophage heterogeneity in liver injury and fibrosis. J Hepatol 60:1090–6.
  • Takato H, Yasui M, Ichikawa Y. Waseda, et al. (2011). The specific chymase inhibitor TY-51469 suppresses the accumulation of neutrophils in the lung and reduces silica-induced pulmonary fibrosis in mice. Exp Lung Res 37:101–8.
  • Tanaka K, Morimoto J, Kon S, et al. (2004). Effect of osteopontin alleles on beta-glucan-induced granuloma formation in the mouse liver. Am J Pathol 164:567–75.
  • Uboldi C, Giudetti G, Broggi F, et al. (2012). Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts. Mutat Res 745:11–20.
  • van Kesteren PC, Cubadda F, Bouwmeester H, et al. (2015). Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food. Nanotoxicology 9:442–52.
  • Wu X, Wu M, Zhao JX. (2014). Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomedicine 10:297–312.
  • Xie G, Sun J, Zhong G, et al. (2010). Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84:183–90.
  • Xue Y, Chen Q, Ding T, Sun J. (2014). SiO2 nanoparticle-induced impairment of mitochondrial energy metabolism in hepatocytes directly and through a Kupffer cell-mediated pathway in vitro. Int J Nanomedicine 9:2891–903.
  • Yu Y, Duan J, Yu Y, et al. (2014). Silica nanoparticles induce autophagy and autophagic cell death in HepG2 cells triggered by reactive oxygen species. J Hazard Mater 270:176–86.
  • Zhang H, Dunphy DR, Jiang X, et al. (2012). Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J Am Chem Soc 134:15790–804.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.