126
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Functional Analysis of a Dominant Mutation of Human Connexin26 Associated with Nonsyndromic Deafness

, , , , , , , , , & show all
Pages 425-431 | Received 01 Sep 2001, Accepted 15 Sep 2001, Published online: 11 Jul 2009

References

  • Abrams C. K., Bennett M. V. L. Hereditary human diseases caused by connexin mutations. Gap junctions, C. Peracchia. Academic Press, San Diego 2000; 423–459
  • Barrio L. C., Suchyna T., Bargiello T., Xu L. X., Roginski R. S., Bennett M. V. L., Nicholson B. J. Gapjunctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc. Natl. Acad. Sci. USA 1991; 88: 8410–8414
  • Bevans C. G., Kordel M., Rhee S. K., Harris A. L. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J. Biol. Chem. 1998; 273: 2808–2816
  • Brink P. R., Cronin K., Banach K., Peterson E., Westphale E. M., Seul K.H., Ramanan S. V., Beyer E. C. Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am. J. Physiol. 1997; 273: C1386–C1396
  • Bruzzone R., White T. W., Paul D. L. Expression of chimeric connexins reveals new properties of the formation and gating behavior of gap junction channels. J. Cell Sci. 1994; 107: 955–967
  • Bruzzone R., White T. W., Paul D. L. Connections with connexins: the molecular basis of direct intercellular signaling. Eur. J. Biochem. 1996; 238: 1–27
  • Carrasquillo M. M., Zlotogora J., Barges S., Chakravarti A. Two different connexin 26 mutations in an inbred kindred segregating non-syndromic recessive deafness: implications for genetic studies in isolated populations. Hum. Mol. Genet. 1997; 6: 2163–2172
  • Denoyelle F., et al. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum. Mol. Genet. 1997; 6: 2173–2177
  • Denoyelle F., Lina-Granade G., Plauchu P., Bruzzone R., Chaib H., Lévi-Acobas F., Weil D., Petit C. Connexin26 gene linked to a dominant deafness. Nature 1998; 393: 319–320
  • Dunn R. A., Morest D. K. Receptor synapses without synaptic ribbons in the cochlea of the cat. Proc. Natl. Acad. Sci. USA 1975; 72: 3599–3603
  • Estívill X., Fortina P., Surrey S., Rabionet R., Melchionda S., D'Agruma L., Mansfield E., Rappaport E., Govea N., Mila M., Zelante L., Gasparini P. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 1998; 351: 394–398
  • Kikuchi T., Kimura R. S., Paul D. L., Adams J. C. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat. Embryol. 1995; 191: 101–118
  • Lagostena L., Ashmore J. E., Kachar B., Mammano F. Purinergic control of intercellular communication between Hensen's cells of the guinea-pig cochlea. J. Physiol. 2001; 531: 693–706
  • Lautermann J., Frank H. G., Jahnke K., Traub O., Winterhager E. Developmental expression patterns of connexin26 and -30 in the rat cochlea. Dev. Genet. 1999; 25: 306–311
  • Maestrini E., Korge B. P., Sierra J., Calzolari E., Cambiaghi S., Scudder P. M., Hovnanian A., Monaco A. P., Munro C. S. A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families. Hum. Mol. Genet. 1999; 8: 1237–1243
  • Martin P. E. M., Coleman S. L., Casalotti S. O., Forge A., Evans W. H. Properties of connexin26 gap junctional proteins derived from mutations associated with non-syndromal heriditary deafness. Hum. Mol. Genet. 1999; 8: 2369–2376
  • Nadol J. B., Mulroy M. J., Goodenough D. A., Weiss T. F. Tight and gap junctions in a vertebrate inner ear. Am. J. Anal. 1976; 147: 281–301
  • Gap junctions, C. Peracchia. Academic Press, San Diego 2000
  • Petit C., Levilliers J., Hardelin J.-P. Molecular genetics of hearing loss. Annu. Rev. Genet. 2001, in press
  • Richard G., White T. W., Smith L. E., Bailey R. A., Compton J. G., Paul D. L., Bale S. J. Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Hum. Genet. 1998; 103: 393–399
  • Rouan F., White T. W., Brown N., Taylor A. M., Lucke T. W., Paul D. L., Munro C. S., Uitto J., Hodgins M. B., Richard G. Trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation. J. Cell Sci. 2001; 114: 2105–2113
  • Romanello M., D'Andrea P. Dual mechanism of intercellular communication in HOB1T osteoblastic cells: a role for gap-junctional hemichannels. J. Bone Miner. Res. 2001; 16: 1465–1476
  • Unger V. M., Kumar N. M., Gilula N. B., Yeager M. Three-dimensional structure of a recombinant gap junction membrane channel. Science 1999; 283: 1176–1180
  • White T. W., Deans M. R., Kelsell D. P., Paul D. L. Connexin mutations in deafness. Nature 1998; 394: 630–631
  • White T. W., Paul D. L. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 1999; 61: 283–310
  • Xia A. P., Ikeda K., Katori Y., Oshima T., Kikuchi T., Takasaka T. Expression of connexin 31 in the developing mouse cochlea. Neuroreport 2000; 11: 2449–2453
  • Yeager M., Nicholson B. J. Structure of gap junction intercellular channels. Curr. Opin. Struct. Biol. 1996; 6: 183–192

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.