1,205
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Trafficking Highways to the Intercalated Disc: New Insights Unlocking the Specificity of Connexin 43 Localization

&
Pages 43-54 | Received 25 Nov 2013, Accepted 09 Dec 2013, Published online: 24 Jan 2014

REFERENCES

  • Agullo-Pascual E, Reid DA, Keegan S, Sidhu M, Fenyo D, Rothenberg E, Delmar M (2013). Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque. Cardiovasc Res. 100: 231–240.
  • Ai X, Pogwizd SM (2005). Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res. 96: 54–63.
  • Akar FG, Nass RD, Hahn S, Cingolani E, Shah M, Hesketh GG, Disilvestre D, Tunin RS, Kass DA, Tomaselli GF (2007). Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am J Physiol Heart Circ Physiol. 293: H1223–H1230.
  • Akar FG, Spragg DD, Tunin RS, Kass DA, Tomaselli GF (2004). Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res. 95: 717–725.
  • Akkerman M, Overdijk EJ, Schel JH, Emons AM, Ketelaar T (2011). Golgi body motility in the plant cell cortex correlates with actin cytoskeleton organization. Plant Cell Physiol. 52: 1844–1855.
  • Angst BD, Khan LU, Severs NJ, Whitely K, Rothery S, Thompson RP, Magee AI, Gourdie RG (1997). Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ Res. 80: 88–94.
  • Aschenbrenner L, Naccache SN, Hasson T (2004). Uncoated endocytic vesicles require the unconventional myosin, Myo6, for rapid transport through actin barriers. Mol Biol Cell. 15: 2253–2263.
  • Baker SM, Kim N, Gumpert AM, Segretain D, Falk MM (2008). Acute internalization of gap junctions in vascular endothelial cells in response to inflammatory mediator-induced G-protein coupled receptor activation. FEBS Lett. 582: 4039–4046.
  • Bakker ML, Boink GJ, Boukens BJ, Verkerk AO, VAN Den Boogaard M, Den Haan AD, Hoogaars WM, Buermans HP, DE Bakker JM, Seppen J, Tan HL, Moorman AF, ‘T Hoen PA, Christoffels VM (2012). T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc Res. 94: 439–449.
  • Bakker ML, Boukens BJ, Mommersteeg MT, Brons JF, Wakker V, Moorman AF, Christoffels VM (2008). Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ Res. 102: 1340–1349.
  • Barker RJ, Price RL, Gourdie RG (2001). Increased co-localization of connexin43 and ZO-1 in dissociated adult myocytes. Cell Commun Adhes. 8: 205–208.
  • Barker RJ, Price RL, Gourdie RG (2002). Increased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions. Circ Res. 90: 317–324.
  • Beardslee MA, Laing JG, Beyer EC, Saffitz JE (1998). Rapid turnover of connexin43 in the adult rat heart. Circ Res. 83: 629–635.
  • Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE (2000). Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res. 87: 656–662.
  • Benson DW, Silberbach GM, Kavanaugh-Mchugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, Seidman CE, Plowden J, Kugler JD (1999). Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 104: 1567–1573.
  • Boateng SY, Goldspink PH (2008). Assembly and maintenance of the sarcomere night and day. Cardiovasc Res. 77: 667–675.
  • Boukens BJ, Christoffels VM (2012). Electrophysiological patterning of the heart. Pediatr Cardiol. 33: 900–906.
  • Candeias MM, Powell DJ, Roubalova E, Apcher S, Bourougaa K, Vojtesek B, Bruzzoni-Giovanelli H, Fahraeus R (2006). Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene. 25: 6936–6947.
  • Cochrane K, Su V, Lau AF (2013). The connexin43-interacting protein, CIP85, mediates the internalization of connexin43 from the plasma membrane. Cell Commun Adhes. 20: 53–66.
  • D'hondt C, Iyyathurai J, Vinken M, Rogiers V, Leybaert L, Himpens B, Bultynck G (2013). Regulation of connexin- and pannexin-based channels by post-translational modifications. Biol Cell. 105: 373–398.
  • Danik SB, Liu F, Zhang J, Suk HJ, Morley GE, Fishman GI, Gutstein DE (2004). Modulation of cardiac gap junction expression and arrhythmic susceptibility. Circ Res. 95: 1035–1041.
  • Delmar M (2004). The intercalated disk as a single functional unit. Heart Rhythm. 1: 12–13.
  • Domes K, Ding J, Lemke T, Blaich A, Wegener JW, Brandmayr J, Moosmang S, Hofmann F (2011). Truncation of murine CaV1.2 at Asp-1904 results in heart failure after birth. J Biol Chem. 286: 33863–33871.
  • Duffy HS, Ashton AW, O'donnell P, Coombs W, Taffet SM, Delmar M, Spray DC (2004). Regulation of connexin43 protein complexes by intracellular acidification. Circ Res. 94: 215–222.
  • Dupays L, Jarry-Guichard T, Mazurais D, Calmels T, Izumo S, Gros D, Theveniau-Ruissy M (2005). Dysregulation of connexins and inactivation of NFATc1 in the cardiovascular system of Nkx2–5 null mutants. J Mol Cell Cardiol. 38: 787–798.
  • Eckardt D, Theis M, Degen J, Ott T, Van Rijen HV, Kirchhoff S, Kim JS, De Bakker JM, Willecke K (2004). Functional role of connexin43 gap junction channels in adult mouse heart assessed by inducible gene deletion. J Mol Cell Cardiol. 36: 101–110.
  • Eloff BC, Lerner DL, Yamada KA, Schuessler RB, Saffitz JE, Rosenbaum DS (2001). High resolution optical mapping reveals conduction slowing in connexin43 deficient mice. Cardiovasc Res. 51: 681–690.
  • Falk MM, Baker SM, Gumpert AM, Segretain D, Buckheit RW, III 2009. Gap junction turnover is achieved by the internalization of small endocytic double-membrane vesicles. Mol Biol Cell. 20: 3342–3352.
  • Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM (2009). Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7: e38.
  • Fidler LM, Wilson GJ, Liu F, Cui X, Scherer SW, Taylor GP, Hamilton RM (2009). Abnormal connexin43 in arrhythmogenic right ventricular cardiomyopathy caused by plakophilin-2 mutations. J Cell Mol Med. 13: 4219–4228.
  • Fishman GI, Eddy RL, Shows TB, Rosenthal L, Leinwand LA (1991). The human connexin gene family of gap junction proteins: distinct chromosomal locations but similar structures. Genomics. 10: 250–256.
  • Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, Chuckowree IS, Clarke PA, Depledge P, Eccles SA, Friedman LS, Hayes A, Hancox TC, Kugendradas A, Lensun L, Moore P, Olivero AG, Pang J, Patel S, Pergl-Wilson GH, Raynaud FI, Robson A, Saghir N, Salphati L, Sohal S, Ultsch MH, Valenti M, Wallweber HJ, Wan NC, Wiesmann C, Workman P, Zhyvoloup A, Zvelebil MJ, Shuttleworth SJ (2008). The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-t hieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem. 51: 5522–5532.
  • Fong JT, Kells RM, Falk MM (2013). Two tyrosine-based sorting signals in the Cx43 C-terminus cooperate to mediate gap junction endocytosis. Mol Biol Cell. 24: 2834–2848.
  • Fong JT, Kells RM, Gumpert AM, Marzillier JY, Davidson MW, Falk MM (2012). Internalized gap junctions are degraded by autophagy. Autophagy. 8: 794–811.
  • Forbes MS, Sperelakis N (1985). Intercalated discs of mammalian heart: a review of structure and function. Tissue Cell. 17: 605–648.
  • Fort AG, Murray JW, Dandachi N, Davidson MW, Dermietzel R, Wolkoff AW, Spray DC (2011). In vitro motility of liver connexin vesicles along microtubules utilizes kinesin motors. J Biol Chem. 286: 22875–22885.
  • Francis R, Xu X, Park H, Wei CJ, Chang S, Chatterjee B, Lo C (2011). Connexin43 modulates cell polarity and directional cell migration by regulating microtubule dynamics. PLoS One. 6: e26379.
  • Fromaget C, El Aoumari A, Gros D (1992). Distribution pattern of connexin 43, a gap junctional protein, during the differentiation of mouse heart myocytes. Differentiation. 51: 9–20.
  • Fu Y, Westenbroek RE, Yu FH, Clark JP, III, Marshall MR, Scheuer T, Catterall WA (2011). Deletion of the distal C terminus of CaV1.2 channels leads to loss of beta-adrenergic regulation and heart failure in vivo. J Biol Chem. 286: 12617–12626.
  • Gaborit N, Sakuma R, Wylie JN, Kim KH, Zhang SS, Hui CC, Bruneau BG (2012). Cooperative and antagonistic roles for Irx3 and Irx5 in cardiac morphogenesis and postnatal physiology. Development. 139: 4007–4019.
  • Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002). Multicolor and electron microscopic imaging of connexin trafficking. Science. 296: 503–507.
  • Gao T, Cuadra AE, Ma H, Bunemann M, Gerhardstein BL, Cheng T, Eick RT, Hosey MM (2001). C-terminal fragments of the alpha 1C (CaV1.2) subunit associate with and regulate L-type calcium channels containing C-terminal-truncated alpha 1C subunits. J Biol Chem. 276: 21089–21097.
  • Gerhardstein BL, Gao T, Bunemann M, Puri TS, Adair A, Ma H, Hosey MM (2000). Proteolytic processing of the C terminus of the alpha(1C) subunit of L-type calcium channels and the role of a proline-rich domain in membrane tethering of proteolytic fragments. J Biol Chem. 275: 8556–8563.
  • Giepmans BN, Verlaan I, Hengeveld T, Janssen H, Calafat J, Falk MM, Moolenaar WH (2001). Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol. 11: 1364–1368.
  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, Mcguire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2013). Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 127: e6–e245.
  • Goldmuntz E, Geiger E, Benson DW (2001). NKX2.5 mutations in patients with tetralogy of fallot. Circulation. 104: 2565–2568.
  • Gomez-Skarmeta JL, Modolell J (2002). Iroquois genes: genomic organization and function in vertebrate neural development. Curr Opin Genet Dev. 12: 403–408.
  • Gourdie RG, Green CR, Severs NJ (1991). Gap junction distribution in adult mammalian myocardium revealed by an anti-peptide antibody and laser scanning confocal microscopy. J Cell Sci. 99: 41–55.
  • Gourdie RG, Green CR, Severs NJ, Thompson RP (1992). Immunolabelling patterns of gap junction connexins in the developing and mature rat heart. Anat Embryol (Berl). 185: 363–378.
  • Guerrero PA, Schuessler RB, Davis LM, Beyer EC, Johnson CM, Yamada KA, Saffitz JE (1997). Slow ventricular conduction in mice heterozygous for a connexin43 null mutation. J Clin Invest. 99: 1991–1998.
  • Gutstein DE, Morley GE, Tamaddon H, Vaidya D, Schneider MD, Chen J, Chien KR, Stuhlmann H, Fishman GI (2001). Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res. 88: 333–339.
  • Hayakawa K, Ono S, Nagaoka R, Saitoh O, Obinata T (1996). Differential assembly of cytoskeletal and sarcomeric actins in developing skeletal muscle cells in vitro. Zoolog Sci. 13: 509–517.
  • Hesketh GG, Shah MH, Halperin VL, Cooke CA, Akar FG, Yen TE, Kass DA, Machamer CE, Van Eyk JE, Tomaselli GF (2010). Ultrastructure and regulation of lateralized connexin43 in the failing heart. Circ Res. 106: 1153–1163.
  • Hesketh GG, Van Eyk JE, Tomaselli GF (2009). Mechanisms of gap junction traffic in health and disease. J Cardiovasc Pharmacol. 54: 263–272.
  • Hirschy A, Schatzmann F, Ehler E, Perriard JC (2006). Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol. 289: 430–441.
  • Hong TT, Cogswell R, James CA, Kang G, Pullinger CR, Malloy MJ, Kane JP, Wojciak J, Calkins H, Scheinman MM, Tseng ZH, Ganz P, De Marco T, Judge DP, Shaw RM. 2012a. Plasma BIN1 correlates with heart failure and predicts arrhythmia in patients with arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 9: 961–967.
  • Hong TT, Smyth JW, Chu KY, Vogan JM, Fong TS, Jensen BC, Fang K, Halushka MK, Russell SD, Colecraft H, Hoopes CW, Ocorr K, Chi NC, Shaw RM. 2012b. BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm. 9: 812–820.
  • Hoogaars WM, Barnett P, Moorman AF, Christoffels VM. 2007a. T-box factors determine cardiac design. Cell Mol Life Sci. 64: 646–660.
  • Hoogaars WM, Engel A, Brons JF, Verkerk AO, DE Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P, Ravesloot JH, Moorman AF, Verheijck EE, Christoffels VM. 2007b. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 21: 1098–1112.
  • Howard J (1997). Molecular motors: structural adaptations to cellular functions. Nature. 389: 561–567.
  • Huang GY, Wessels A, Smith BR, Linask KK, Ewart JL, Lo CW (1998). Alteration in connexin 43 gap junction gene dosage impairs conotruncal heart development. Dev Biol. 198: 32–44.
  • Hulme JT, Konoki K, Lin TW, Gritsenko MA, Camp DG, II Bigelow, DJ, Catterall WA (2005). Sites of proteolytic processing and noncovalent association of the distal C-terminal domain of CaV1.1 channels in skeletal muscle. Proc Natl Acad Sci U S A. 102: 5274–5279.
  • Hulme JT, Yarov-Yarovoy V, Lin TW, Scheuer T, Catterall WA (2006). Autoinhibitory control of the CaV1.2 channel by its proteolytically processed distal C-terminal domain. J Physiol. 576: 87–102.
  • Hunter AW, Barker RJ, Zhu C, Gourdie RG (2005). Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell. 16: 5686–5698.
  • Ingolia NT, Lareau LF, Weissman JS (2011). Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell. 147: 789–802.
  • Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, DE Camilli P (2005). Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell. 9: 791–804.
  • Jaiswal JK, Rivera VM, Simon SM (2009). Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. Cell. 137: 1308–1319.
  • Johnson RG, Meyer RA, Li XR, Preus DM, Tan L, Grunenwald H, Paulson AF, Laird DW, Sheridan JD (2002). Gap junctions assemble in the presence of cytoskeletal inhibitors, but enhanced assembly requires microtubules. Exp Cell Res. 275: 67–80.
  • Johnstone SR, Billaud M, Lohman AW, Taddeo EP, Isakson BE (2012). Posttranslational modifications in connexins and pannexins. J Membr Biol. 245: 319–332.
  • Jordan K, Solan JL, Dominguez M, Sia M, Hand A, Lampe PD, Laird DW (1999). Trafficking, assembly, and function of a connexin43-green fluorescent protein chimera in live mammalian cells. Mol Biol Cell. 10: 2033–2050.
  • Kalcheva N, Qu J, Sandeep N, Garcia L, Zhang J, Wang Z, Lampe PD, Suadicani SO, Spray DC, Fishman GI (2007). Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital dysplasia. Proc Natl Acad Sci U S A. 104: 20512–20516.
  • Kapoor N, Galang G, Marban E, Cho HC (2011). Transcriptional suppression of connexin43 by TBX18 undermines cell-cell electrical coupling in postnatal cardiomyocytes. J Biol Chem. 286: 14073–14079.
  • Kapoor N, Liang W, Marban E, Cho HC (2013). Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat Biotechnol. 31: 54–62.
  • Kasahara H, Ueyama T, Wakimoto H, Liu MK, Maguire CT, Converso KL, Kang PM, Manning WJ, Lawitts J, Paul DL, Berul CI, Izumo S (2003). Nkx2.5 homeoprotein regulates expression of gap junction protein connexin 43 and sarcomere organization in postnatal cardiomyocytes. J Mol Cell Cardiol. 35: 243–256.
  • Kasahara H, Wakimoto H, Liu M, Maguire CT, Converso KL, Shioi T, Huang WY, Manning WJ, Paul D, Lawitts J, Berul CI, Izumo S (2001). Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2.5 homeoprotein. J Clin Invest. 108: 189–201.
  • Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J (2004). Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res. 62: 426–436.
  • Kucera JP, Rohr S, Rudy Y (2002). Localization of sodium channels in intercalated disks modulates cardiac conduction. Circ Res. 91: 1176–1182.
  • Lauf U, Giepmans BN, Lopez P, Braconnot S, Chen SC, Falk MM (2002). Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci U S A. 99: 10446–10451.
  • Li J, Levin MD, Xiong Y, Petrenko N, Patel VV, Radice GL (2008). N-cadherin haploinsufficiency affects cardiac gap junctions and arrhythmic susceptibility. J Mol Cell Cardiol. 44: 597–606.
  • Lowe JS, Palygin O, Bhasin N, Hund TJ, Boyden PA, Shibata E, Anderson ME, Mohler PJ (2008). Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. J Cell Biol. 180: 173–186.
  • Lubkemeier I, Requardt RP, Lin X, Sasse P, Andrie R, Schrickel JW, Chkourko H, Bukauskas FF, Kim JS, Frank M, Malan D, Zhang J, Wirth A, Dobrowolski R, Mohler PJ, Offermanns S, Fleischmann BK, Delmar M, Willecke K (2013). Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels. Basic Res Cardiol. 108: 348.
  • Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2–5. Genes Dev. 9: 1654–1666.
  • Maass K, Chase SE, Lin X, Delmar M (2009). Cx43 CT domain influences infarct size and susceptibility to ventricular tachyarrhythmias in acute myocardial infarction. Cardiovasc Res. 84: 361–367.
  • Maass K, Shibayama J, Chase SE, Willecke K, Delmar M (2007). C-terminal truncation of connexin43 changes number, size, and localization of cardiac gap junction plaques. Circ Res. 101: 1283–1291.
  • Majoul IV, Gao L, Betzig E, Onichtchouk D, Butkevich E, Kozlov Y, Bukauskas F, Bennett MV, Lippincott-Schwartz J, Duden R (2013). Fast structural responses of gap junction membrane domains to AB5 toxins. Proc Natl Acad Sci U S A. 110: E4125–4133.
  • Malhotra JD, Thyagarajan V, Chen C, Isom LL (2004). Tyrosine-phosphorylated and nonphosphorylated sodium channel beta1 subunits are differentially localized in cardiac myocytes. J Biol Chem. 279: 40748–40754.
  • Marquez-Rosado L, Solan JL, Dunn CA, Norris RP, Lampe PD (2012). Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues. Biochim Biophys Acta. 1818: 1985–1992.
  • Misumi Y, Misumi Y, Miki K, Takatsuki A, Tamura G, Ikehara Y (1986). Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem. 261: 11398–11403.
  • Morley GE, Vaidya D, Samie FH, Lo C, Delmar M, Jalife J (1999). Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J Cardiovasc Electrophysiol. 10: 1361–1375.
  • Muhlfeld C, Richter J (2006). High-pressure freezing and freeze substitution of rat myocardium for immunogold labeling of connexin 43. Anat Rec A Discov Mol Cell Evol Biol. 288: 1059–1067.
  • Musil LS, Goodenough DA (1993). Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell. 74: 1065–1077.
  • Noorman M, Van Der Heyden MA, van Veen TA, Cox MG, Hauer RN, De Bakker JM, van Rijen HV (2009). Cardiac cell-cell junctions in health and disease: Electrical versus mechanical coupling. J Mol Cell Cardiol. 47: 23–31.
  • Nygren A, Olson ML, Chen KY, Emmett T, Kargacin G, Shimoni Y (2007). Propagation of the cardiac impulse in the diabetic rat heart: reduced conduction reserve. J Physiol. 580: 543–560.
  • Olbina G, Eckhart W (2003). Mutations in the second extracellular region of connexin 43 prevent localization to the plasma membrane, but do not affect its ability to suppress cell growth. Mol Cancer Res. 1: 690–700.
  • Oxford EM, Musa H, Maass K, Coombs W, Taffet SM, Delmar M (2007). Connexin43 remodeling caused by inhibition of plakophilin-2 expression in cardiac cells. Circ Res. 101: 703–711.
  • Oyamada M, Takebe K, Oyamada Y (2013). Regulation of connexin expression by transcription factors and epigenetic mechanisms. Biochim Biophys Acta. 1828: 118–133.
  • Palatinus JA, Gourdie RG (2007). Xin and the art of intercalated disk maintenance. Am J Physiol Heart Circ Physiol. 293: H2626–2628.
  • Palatinus JA, O'quinn MP, Barker RJ, Harris BS, Jourdan J, Gourdie RG (2011). ZO-1 determines adherens and gap junction localization at intercalated disks. Am J Physiol Heart Circ Physiol. 300: H583–594.
  • Palatinus JA, Rhett JM, Gourdie RG (2012). The connexin43 carboxyl terminus and cardiac gap junction organization. Biochim Biophys Acta. 1818: 1831–1843.
  • Peters NS, Coromilas J, Severs NJ, Wit AL (1997). Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation. 95: 988–996.
  • Peters NS, Green CR, Poole-Wilson PA, Severs NJ (1993). Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation. 88: 864–875.
  • Peters NS, Severs NJ, Rothery SM, Lincoln C, Yacoub MH, Green CR (1994). Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation. 90: 713–725.
  • Petitprez S, Zmoos AF, Ogrodnik J, Balse E, Raad N, El-Haou S, Albesa M, Bittihn P, Luther S, Lehnart SE, Hatem SN, Coulombe A, Abriel H (2011). SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ Res. 108: 294–304.
  • Pfeifer I, Anderson C, Werner R, Oltra E (2004). Redefining the structure of the mouse connexin43 gene: selective promoter usage and alternative splicing mechanisms yield transcripts with different translational efficiencies. Nucleic Acids Res. 32: 4550–4562.
  • Piehl M, Lehmann C, Gumpert A, Denizot JP, Segretain D, Falk MM (2007). Internalization of large double-membrane intercellular vesicles by a clathrin-dependent endocytic process. Mol Biol Cell. 18: 337–347.
  • Qu C, Gardner P, Schrijver I (2009). The role of the cytoskeleton in the formation of gap junctions by Connexin 30. Exp Cell Res. 315: 1683–1692.
  • Reaume AG, De Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995). Cardiac malformation in neonatal mice lacking connexin43. Science. 267: 1831–1834.
  • Remo BF, Qu J, Volpicelli FM, Giovannone S, Shin D, Lader J, Liu FY, Zhang J, Lent DS, Morley GE, Fishman GI (2011). Phosphatase-resistant gap junctions inhibit pathological remodeling and prevent arrhythmias. Circ Res. 108: 1459–1466.
  • Rhee DY, Zhao XQ, Francis RJ, Huang GY, Mably JD, Lo CW (2009). Connexin 43 regulates epicardial cell polarity and migration in coronary vascular development. Development. 136: 3185–3193.
  • Rhett JM, Jourdan J, Gourdie RG (2011). Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol Biol Cell. 22: 1516–1528.
  • Rhett JM, Ongstad EL, Jourdan J, Gourdie RG (2012). Cx43 associates with Na(v)1.5 in the cardiomyocyte perinexus. J Membr Biol. 245: 411–422.
  • Rhett JM, Veeraraghavan R, Poelzing S, Gourdie RG (2013). The perinexus: sign-post on the path to a new model of cardiac conduction?Trends Cardiovasc Med. 23: 222–228.
  • Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, Konietzka I, Miro E, Totzeck A, Heusch G, Schulz R, Garcia-Dorado D (2006). Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res. 99: 93–101.
  • Rogers SL, Gelfand VI (2000). Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol. 12: 57–62.
  • Ross JL, Ali MY, Warshaw DM (2008). Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol. 20: 41–47.
  • Sato PY, Coombs W, Lin X, Nekrasova O, Green KJ, Isom LL, Taffet SM, Delmar M (2011). Interactions between ankyrin-G, Plakophilin-2, and Connexin43 at the cardiac intercalated disc. Circ Res. 109: 193–201.
  • Schiavi A, Hudder A, Werner R (1999). Connexin43 mRNA contains a functional internal ribosome entry site. FEBS Lett. 464: 118–122.
  • Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG (1998). Congenital heart disease caused by mutations in the transcription factor NKX2–5. Science. 281: 108–111.
  • Schuh M (2011). An actin-dependent mechanism for long-range vesicle transport. Nat Cell Biol. 13: 1431–1436.
  • Scott MP, Tamkun JW, Hartzell GW, III 1989. The structure and function of the homeodomain. Biochim Biophys Acta. 989: 25–48.
  • Sepp R, Severs NJ, Gourdie RG (1996). Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy. Heart. 76: 412–417.
  • Severs NJ (1989). Gap junction shape and orientation at the cardiac intercalated disk. Circ Res. 65: 1458–1462.
  • Shaw RM, Fay AJ, Puthenveedu MA, Von Zastrow M, Jan YN, Jan LY (2007). Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell. 128: 547–560.
  • Shaw RM, Rudy Y (1997). Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ Res. 81: 727–741.
  • Smith JH, Green CR, Peters NS, Rothery S, Severs NJ (1991). Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am J Pathol. 139: 801–821.
  • Smith TD, Mohankumar A, Minogue PJ, Beyer EC, Berthoud VM, Koval M (2012). Cytoplasmic amino acids within the membrane interface region influence connexin oligomerization. J Membr Biol. 245: 221–230.
  • Smyth JW, Hong TT, Gao D, Vogan JM, Jensen BC, Fong TS, Simpson PC, Stainier DY, Chi NC, Shaw RM (2010). Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Invest. 120: 266–279.
  • Smyth JW, Shaw RM (2012). The gap junction life cycle. Heart Rhythm. 9: 151–153.
  • Smyth JW, Shaw RM (2013). Autoregulation of Connexin43 Gap Junction Formation by Internally Translated Isoforms. Cell Rep.
  • Smyth JW, Vogan JM, Buch PJ, Zhang SS, Fong TS, Hong TT, Shaw RM (2012). Actin cytoskeleton rest stops regulate anterograde traffic of connexin 43 vesicles to the plasma membrane. Circ Res. 110: 978–989.
  • Sohl G, Willecke K (2003). An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes. 10: 173–180.
  • Sohl G, Willecke K (2004). Gap junctions and the connexin protein family. Cardiovasc Res. 62: 228–232.
  • Su V, Nakagawa R, Koval M, Lau AF (2010). Ubiquitin-independent proteasomal degradation of endoplasmic reticulum-localized connexin43 mediated by CIP75. J Biol Chem. 285: 40979–40990.
  • Sullivan R, Ruangvoravat C, Joo D, Morgan J, Wang BL, Wang XK, Lo CW (1993). Structure, sequence and expression of the mouse Cx43 gene encoding connexin 43. Gene. 130: 191–199.
  • Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S (1999). The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development. 126: 1269–1280.
  • Theiss C, Meller K (2002). Microinjected anti-actin antibodies decrease gap junctional intercellular commmunication in cultured astrocytes. Exp Cell Res. 281: 197–204.
  • Thevenin AF, Kowal TJ, Fong JT, Kells RM, Fisher CG, Falk MM (2013). Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda). 28: 93–116.
  • Thibodeau IL, Xu J, Li Q, Liu G, Lam K, Veinot JP, Birnie DH, Jones DL, Krahn AD, Lemery R, Nicholson BJ, Gollob MH (2010). Paradigm of genetic mosaicism and lone atrial fibrillation: physiological characterization of a connexin 43-deletion mutant identified from atrial tissue. Circulation. 122: 236–244.
  • Thomas SA, Schuessler RB, Berul CI, Beardslee MA, Beyer EC, Mendelsohn ME, Saffitz JE (1998). Disparate effects of deficient expression of connexin43 on atrial and ventricular conduction: evidence for chamber-specific molecular determinants of conduction. Circulation. 97: 686–691.
  • Thomas T, Jordan K, Laird DW (2001). Role of cytoskeletal elements in the recruitment of Cx43-GFP and Cx26-YFP into gap junctions. Cell Commun Adhes. 8: 231–236.
  • Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M (1998). Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J Biol Chem. 273: 12725–12731.
  • Unwin PN, Zampighi G (1980). Structure of the junction between communicating cells. Nature. 283: 545–549.
  • Uzzaman M, Honjo H, Takagishi Y, Emdad L, Magee AI, Severs NJ, Kodama I (2000). Remodeling of gap junctional coupling in hypertrophied right ventricles of rats with monocrotaline-induced pulmonary hypertension. Circ Res. 86: 871–878.
  • Van Norstrand DW, Asimaki A, Rubinos C, Dolmatova E, Srinivas M, Tester DJ, Saffitz JE, Duffy HS, Ackerman MJ (2012). Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death. Circulation. 125: 474–481.
  • van Rijen HV, Eckardt D, Degen J, Theis M, Ott T, Willecke K, Jongsma HJ, Opthof T, De Bakker JM (2004). Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation. 109: 1048–1055.
  • van Veen AA, van Rijen HV, Opthof T (2001). Cardiac gap junction channels: modulation of expression and channel properties. Cardiovasc Res. 51: 217–229.
  • van Zeijl L, Ponsioen B, Giepmans BN, Ariaens A, Postma FR, Varnai P, Balla T, Divecha N, Jalink K, Moolenaar WH (2007). Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate. J Cell Biol. 177: 881–891.
  • Wiese C, Grieskamp T, Airik R, Mommersteeg MT, Gardiwal A, DE Gier-De Vries C, Schuster-Gossler K, Moorman AF, Kispert A, Christoffels VM (2009). Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res. 104: 388–397.
  • Xu X, Francis R, Wei CJ, Linask KL, Lo CW (2006). Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development. 133: 3629–3639.
  • Ya J, Erdtsieck-Ernste EB, De Boer PA, Van Kempen MJ, Jongsma H, Gros D, Moorman AF, Lamers WH (1998). Heart defects in connexin43-deficient mice. Circ Res. 82: 360–366.
  • Zhang SS, Kim KH, Rosen A, Smyth JW, Sakuma R, Delgado-Olguin P, Davis M, Chi NC, Puviindran V, Gaborit N, Sukonnik T, Wylie JN, Brand-Arzamendi K, Farman GP, Kim J, Rose RA, Marsden PA, Zhu Y, Zhou YQ, Miquerol L, Henkelman RM, Stainier DY, Shaw RM, Hui CC, Bruneau BG, Backx PH (2011). Iroquois homeobox gene 3 establishes fast conduction in the cardiac His-Purkinje network. Proc Natl Acad Sci U S A. 108: 13576–13581.
  • Zhang SS, Shaw RM (2013). Multilayered regulation of cardiac ion channels. Biochim Biophys Acta, 1833: 876–885.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.