29
Views
0
CrossRef citations to date
0
Altmetric
Original Article

An Alternatively Spliced Exon in the Extracellular Domain of the Human α6 Integrin Subunit-Functional Analysis of the α6 Integrin Variants

, &
Pages 143-161 | Received 25 Jan 1995, Published online: 11 Jul 2009

References

  • Altruda F., Cervella P., Tarone G., Botta C., Balzac F., Stefanuto G., Silengo L. A human integrin β1 subunit with a unique cytoplasmic domain generated by alternative mRNA processing. Gene 1990; 95: 261–266
  • Amiot M., Bernard A., Tran H. C., Leca G., Kanellopoulos J. M., Boumsell L. The human cell surface glycoprotein complex (gp120,200) recognized by monoclonal antibody K20 is a component binding to phytohaemmagglutinin on T cells. Scand. J. Immunol. 1986; 23: 109–118
  • Argraves W. S., Suzuki S., Arai H., Thompson K., Pierschbacher M. D., Ruoslahti E. Amino acid sequence of the human fibronectin receptor. J. Cell Biol. 1987; 105: 1183–1190
  • Arroyo A. G., Sánchez-Mateos P., Campanero M. R., Martin-Padura I., Dejana E., Sánchez-Madrid F. Regulation of the VLA integrin-ligand interactions through the β sub-unit. J. Cell Biol. 1992; 117: 659–670
  • Balzac F., Belkin A. M., Koteliansky V. E., Balabanov Y. V., Altruda F., Silengo L., Tarone G. Expression and functional analysis of a cytoplasmic domain variant of the β1 integrin subunit. J. Cell Biol. 1993; 121: 171–178
  • Bray P. F., Leung-I C. S., Shuman M. A. Human platelets and megakaryocytes contain alternately spliced glycoprotein lib mRNAs. J. Biol. Chem. 1990; 265: 9587–9590
  • Brown N. H., King D. L., Wilcox M., Kafatos F. C. Developmentally regulated alternative splicing of drosophila integrin PS2 α transcripts. Cell 1989; 59: 185–195
  • Burgeson R. E., Chiquet M., Deutzmann R., Ekblom P., Engel J., Kleinman H., Martin G. R., Meneguzzi G., Paulsson M., Sanes J., Tlmpl R., Tryggvason K., Yamada Y., Yurchenco P. D. A new nomenclature for the laminins. Matrix Biology 1994; 14: 209–211
  • Collo G., Starr L., Quaranta V. A new isoform of the laminin receptor α7β1 is developmentally regulated in skeletal muscle. J. Biol. Chem. 1993; 268: 19019–19024
  • Cooper H. M., Tamura R. N., Quaranta V. The major laminin receptor on mouse embryonic stem cells is a novel isoform of the α6β1 integrin. J. Cell Biol. 1991; 115: 843–850
  • de Curtis I., Quaranta V., Tamura R. N., Reichardt L. F. Laminin receptors in the retina: sequence analysis of the chick integrin α6 subunit. J. Cell Biol. 1991; 113: 405–416
  • Delwel G. O., Hogervorst F., Kuikman I., Paulsson M., Timpl R., Sonnenberg A. Expression and function of the cytoplasmic variants of the integrin α6 subunit in transfected K562 cells. J. Biol. Chem. 1993; 268: 25865–25875
  • Delwel G. O., de Melker A. A., Hogervorst F., Jaspars L. H., Fles D. L. A., Kuikman I., Lindblom A., Paulsson M., Timpl R., Sonnenberg A. Distinct and overlapping ligand specificities of the α3Aβ1 and α6Aβ1 integrals: recognition of laminin isoforms. Mol. Biol. Cell 1994; 5: 203–215
  • Diamond M. S., Garcia-Aguilar J., Bickford J. K., Corbi A. L., Springer T. A. The I-domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 1993; 120: 1031–1043
  • Djaffar I., Chen Y. P., Creminon C., Maclouf J., Cieutat A. M., Gayet O., Rosa J. P. A new alternative transcript encodes a 60 kDa truncated form of integrin β3. Biochem. J. 1994; 300: 69–74
  • D'Souza S. E., Ginsberg M. H., Burke T. A., Plow E. F. The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its a subunit. J. Biol. Chem. 1990; 265: 3440–3446
  • D'Souza S. E., Ginsberg M. H., Matsueda G. R., Plow E. F. A discrete sequence in a platelet integrin is involved in ligand recognition. Nature 1991; 350: 66–68
  • Fitzgerald L. A., Steiner B., Rail S. C., Lo S. S., Phillips D. R. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. J. Biol. Chem. 1987; 262: 3936–3939
  • Hemler M. E., Sánchez-Madrid F., Flotte T. J., Krensky A. M., Burakoff S. J., Bhan A. K., Springer T. A., Strominger J. L. Glycoproteins of 210,000 and 130,000 M.W. on activated T cells: cell distribution and antigenic relation to components on resting cells and T cell lines. J. Immunol. 1984; 132: 3011–3018
  • Hemler M. E., Crouse C., Sonnenberg A. Association of the VLA α6 subunit with a novel protein. A possible alternative to the common VLA β1 subunit on certain cells. J. Biol. Chem. 1989; 264: 6529–6635
  • Hessle H., Sakai L. Y., Hollister D. W., Burgeson R. E., Engvall E. Basement membrane diversity detected by monoclonal antibodies. Differentiation 1984; 26: 49–54
  • Hierck B. P., Thorsteinsdottir S., Niessen C. M., Freund E., Iperen L., Feyen A., Hogervorst F., Poelman R. E., Mummery C. L., Sonnenberg A. Variants of the α6β1 laminin receptor in early murine development: distribution, molecular cloning and chromosomal localization of the mouse integrin α6 subunit. Cell Adhes. Commun. 1993; 1: 1–21
  • Hogervorst F., Kuikman I., von dem Borne A. E. G. Kr, Sonnenberg A. Cloning and sequence analysis of beta-4 cDNA: an integrin subunit that contains a unique 118 kD cytoplasmic domain. EMBO J. 1990; 9: 765–770
  • Hogervorst F., Kuikman I., Geurts van Kessel A., Sonnenberg A. Molecular cloning of the human α6 integrin subunit. Alternative splicing of α6 mRNA and chromosomal localization of the α6 and β4 genes. Eur. J. Biochem. 1991; 199: 425–433
  • Hogervorst F., Admiraal L. G., Niessen C., Kuikman I., Janssen H., Daams H., Sonnenberg A. Biochemical characterization and tissue distribution of the A and B variants of the integrin α6 subunit. J. Cell Biol. 1993a; 121: 179–191
  • Hogervorst F., Kuikman I., Noteboom E., Sonnenberg A. The role of phosphorylation in activation of the α6Aβ1 laminin receptor. J. Biol. Chem. 1993b; 268: 18427–18430
  • Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25
  • Kamata T., Puzon W., Takada Y. Identification of putative ligand binding sites within I domain of integrin α2β1 (VLA-2, CD49b/CD29). J. Biol. Chem. 1994; 269: 9659–9663
  • Keizer G. D., te Velde A. A., Schwarting R., Figdor C. G., de Vries J. E. Role of p150,95 in adhesion, migration, chemotaxis and phagocytosis of human monocytes. Eur. J. Immunol. 1987; 17: 1317–1322
  • Kennel S. J., Epler R. G., Lankford T. K., Foote L. J., Dickas V., Canamucio M., Cavalierie R., Cosimelli M., Venturo I., Falcioni R., Sacchi A. Second generation monoclonal antibodies to the human integrin α6β4. Hybridoma 1990; 9: 243–255
  • Kern A., Briesewitz R., Banks I., Marcantonio E. E. The role of the I domain in ligand binding of the integrin α1β1. J. Biol. Chem. 1994; 269: 22811–22816
  • Kramer R. H., McDonald K. A., Vu M. P. Human melanoma cells express a novel integrin receptor for laminin. J. Biol. Chem. 1989; 264: 15642–15649
  • Kramer R. H., Vu M. P., Cheng Y. F., Ramos D. M., Timpl R., Waleh N. Laminin-binding integrin α7β1: functional characterization and expression in normal and malignant melanocytes. Cell Regul. 1991; 2: 805–817
  • Laemmli Y. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685
  • Languino L. R., Ruoslahti E. An alternative form of the integrin β1 subunit with a variant cytoplasmic domain. J. Biol. Chem. 1992; 267: 7116–7120
  • Lindblom A., Marsh T., Fauser C., Engel J., Paulsson M. Characterization of native laminin from bovine kidney and comparison with other laminin variants. Eur. J. Biochem. 1994; 219: 383–392
  • Masumoto A., Hemler M. E. Mutation of putative divalent cation sites in the α4 subunit of the integrin VLA-4: distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin. J. Cell Biol. 1993; 123: 245–253
  • Michishita M., Videm V., Arnaout M. A. A novel divalent cation-binding site in the A domain of the β2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 1993; 72: 857–867
  • Mount S. M. A catalogue of splice junction sequences. Nucl. Acid Res. 1982; 10: 459–472
  • Natali P. G., Nicotra M. R., De Martino C. Localization of the α6β4 integrin subunits in normal human non-lymphoid tissues. J. Cell Sci. 1992; 103: 1243–1247
  • Niessen C. M., Hogervorst F., Jaspars L. H., de Melker A. A., Delwel G. O., Hulsman E. H. M., Kuikman I., Sonnenberg A. The α6β4 integrin is a receptor for both laminin and kalinin. Exp. Cell Res. 1994; 211: 360–367
  • Randi A. M., Hogg N. I domain of β2 integrin lymphocyte function-associated antigen-1 contains a binding site for ligand intercellular adhesion molecule-1. J. Biol. Chem. 1994; 269: 12395–12398
  • Kousselle P., Lunstrum G. P., Keene D. R., Burgeson R. E. Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J. Cell Biol. 1991; 114: 567–576
  • Sambrook J., Fritsch E. F., Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1989
  • Shaw L. M., Mercurio A. M. Regulation of cellular interactions with laminin by integrin cytoplasmic domains: the A and B structural variants of the α6β1 integrin differentially modulate the adhesive strength, morphology, and migration of macrophages. Mol. Biol. Cell 1994; 5: 679–690
  • Smith J. W., Cheresh D. A. Integrin (αvβ3)-ligand interaction. J. Biol. Chem. 1990; 265: 2168–2172
  • Song W. K., Wang W., Foster R. F., Bielser D. A., Kaufman S. J. H36-α7 is a novel integrin alpha chain that is developmentally regulated during skeletal myogenesis. J. Cell Biol. 1992; 117: 643–657
  • Song W. K., Wang W., Sato H., Bielser D. A., Kaufman S. J. Expression of α7 integrin cytoplasmic domains during skeletal muscle development: alternate forms, conformational change, and homologies with serine/threonine kinases and tyrosine phosphatases. J. Cell Sci. 1993; 106: 1139–1152
  • Sonnenberg A., Janssen H., Hogervorst F., Calafat J., Hilgers J. A complex of platelet glycoproteins Ic and IIa identified by a rat monoclonal antibody. J. Biol. Chem. 1987; 262: 10376–10383
  • Sonnenberg A., Modderman P. W., Hogervorst F. Laminin receptor on platelets is the integrin receptor VLA-6. Nature 1988a; 336: 487–489
  • Sonnenberg A., Hogervorst F., Osterop A., Veltman F. E. M. Identification and characterization of a novel antigen complex on mouse mammary tumor cells using a monoclonal antibody against platelet glycoprotein Ic. J. Biol. Chem. 1988b; 263: 14030–14038
  • Sonnenberg A., Linders K. T. J., Daams J. H., Kennel S. J. The α6β1 (VLA-6) and α6β4 protein complexes: tissue distribution and biochemical properties. J. Cell Sci. 1990; 96: 207–217
  • Sonnenberg A. Integrins and their ligands. Current Topics in Microbiology and Immunology, Vol. 1993; 184: 7–35
  • Spinardi L., Ren Y. L., Sanders R., Giancotti F. G. The β4 subunit cytoplasmic domain mediates the interaction of α6β4 integrin with the cytoskeleton of hemidesmosomes. Mol. Biol. Cell 1993; 4: 871–884
  • Stanley P., Bates P. A., Harvey J., Bennett R. I., Hogg N. Integrin LFA-1 α subunit contains an ICAM-1 binding site in domains V and VI. EMBO J 1994; 13: 1790–1798
  • Suzuki S., Naitoh Y. Amino acid sequence of a novel integrin β4 subunit and primary expression of the mRNA in epithelial cells. EMBO J 1990; 9: 757–763
  • Takada Y., Murphy E., Pil P., Chen C., Ginsberg M. H., Hemler M. E. Molecular cloning and expression of the cDNA for α3 subunit of human α3β1 (VLA-3, an integrin receptor for fibronectin, laminin, and collagen. J. Cell Biol. 1991; 115: 257–266
  • Tsuji T., Yamamoto F., Miura Y., Takio K., Titani K., Pawar S., Osawa T., Hakomori S. Characterization through cDNA cloning of galactoprotein b3 (GAP b3), a cell surface membrane glycoprotein showing enhanced expression on oncogenic transformation. Identification of Gap b3 as a member of the integrin superfamily. J. Biol. Chem. 1990; 265: 7016–7021
  • Tsuji T., Hakomori S., Osawa T. Identification of human galactoprotein b3, an oncogenic transformation-induced membrane glycoprotein, as VLA-3 alpha subunit: the primary structure of human integrin alpha 3. J. Biochem. (Tokyo) 1991; 109: 659–665
  • Tamura R., Rozzo C., Starr L., Chambers J., Reichardt L. F., Cooper H. M., Quaranta V. Epithelial integrin α6β4: complete primary structure of α6 and variant forms of β4. J. Cell Biol. 1990; 111: 1593–1604
  • Tamura R. N., Cooper H. M., Collo G., Quaranta V. Specific integrin variants with alternative cytoplasmic domains. Proc. Natl. Acad. Sci. USA 1991; 88: 10183–10187
  • Timpl R., Paulsson M., Dziadek M., Fujiwara S. Basement membranes. Methods Enzymol. 1987; 145: 363–391
  • Van de Wiel-van Kemenade E., van Kooyk Y., de Boer A. J., Huybens R. J. F., Weder P., van de Kasteele W., Melief C. J. M., Figdor C. G. Adhesion of T and B lymphocytes to extracellular matrix and endothelial cells can be triggered through the P subunit of VLA. J. Cell Biol. 1992; 117: 461–470
  • Van Kuppevelt T. H. M. S. M., Languino L. R., Gailit J. O., Suzuki S., Ruoslahti E. An alternative cytoplasmic domain of the integrin β3 subunit. Proc. Natl. Acad. Sci. USA 1989; 86: 5415–5418
  • Von der Mark H., Dürr J., Sonnenberg A., Von der Mark K., Deutzmann R., Goodman S. L. Skeletal myoblasts utilize a navel β1-series integrin and not α6β1 for binding to the E8 and T8 fragments of laminin. J. Biol. Chem. 1991; 266: 23593–23601
  • Werb Z., Tremble P. M., Behrendtsen O., Crowley E., Damsky C. H. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell Biol. 1989; 109: 877–889
  • Zavortink M., Bunch T. A., Brower D. L. Functional properties of alternatively spliced forms of the drosophila PS2. integrin a subunit. Cell Adhesion Commun. 1993; 1: 251–264
  • Ziober B. L., Vu M. P., Waleh N., Crawford J., Lin C. S., Kramer R. H. Alternative extracellular and cytoplasmic domains of the integrin α7 subunit are differentially expressed during development. J. Biol. Chem. 1993; 268: 26773–26783
  • Zusman S., Grinblat Y., Yee G., Kafatos F. C., Hynes R. O. Analyses of PS integrin functions during Drosophila development. Development 1993; 118: 737–750

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.