23
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Serine 752 in the Cytoplasmic Domain of the β3 Integrin Subunit Is not Required for αvβ3 Postreceptor Signaling Events

, , , , &
Pages 25-39 | Received 02 Feb 1996, Accepted 02 Feb 1996, Published online: 11 Jul 2009

References

  • Akiyama S. K., Yamada S. S., Yamada K. M., La Flamme S. E. Transmembrane signal transduction by integrin cytoplasmic domains expressed in single-subunit chimeras. J. Biol. Chem. 1994; 269: 15961–15964
  • Balzac F. S. F., Retta A., Albani A., Melchiorn V., Kotelianski M., Geuna L., Silengo and Tarone G. Expression of β1B integrin isoform in CHO cells results in a dominant negative effect on cell adhesion and motility. J. Cell Biol. 1994; 127: 557–565
  • Bauer J. S., Varner J., Schreiner C., Romberg L., Nicholas R., Juliano R. L. Functional role of the cytoplasmic domain of the integrin a5 subunit. J. Cell Biol. 1993; 122: 209–221
  • Chan B. M. C, Kassner P. D., Schiro J. A., Byers H. R., Klipper T. S., Hemler M. E. Distinct cellular functions mediated by different VLA integrin α subunit cytoplasmic domains. Cell 1992; 68: 1051–1060
  • Chatilla T. A., Geha R. S., Arnaout M. A. Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules. J. Cell Biol. 1989; 109: 3435–3444
  • Chen W. J., Goldstein J. L., Brown M. S. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit mediated internalization of the low density lipoprotein receptor. J Biol. Chem. 1990; 265: 3116–3123
  • Chen Y. P., Djaffar I., Pidard D., Steiner B., Cieutat A. M., Caen J. P., Rosa J. P. Ser-752Pro mutation in the cytoplasmic domain of imegrin-beta3 subunit and defective activation of platelet Integrin-αIIbβ3 (Glycoprotein-IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc. Nat. Acad. Sci. USA 1992; 89: 10169–10173
  • Chen Y. P., O'Toole T. E., Shipley T., Forsyth J., LaFlamme S., Yamada K. M., Shattil S. J., Ginsberg M. H. “Inside-out” signal transduction inhibited by isolated integrin cytoplasmic domains. J. Biol. Chem. 1994; 269: 18307–18310
  • Chen Y. P., O'Toole T. E., Ylanne J., Rosa J. P., Ginsberg M. H. A point mutation in the integrin β3 cytoplasmic domain (S→P) impairs bidirectionnal signaling through αIIbβ3 (Platelet Glycoprotein Ilb-lIIa). Blood 1994; 84: 1857–1865
  • Cheresh D. A., Spiro R. C. Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen and von Willebrand factor. J. Biol. Chem. 1987; 262: 17703–17711
  • Chomczynski P., Sacci N. Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987; 152: 156–159
  • Clark E. A., Brugge J. S. Integnns and signal transduction pathways: the road taken. Science 1995; 268: 233–268
  • Collawn J. F., Stangel M., Kuhn L. A., Esekogwu V., Jing S., Trowbridge I. S., Tainer J. A. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 1990; 63: 1061–1072
  • Cone R. I., Weinacker A., Chen A., Sheppard D. Effects of β subunit cytoplasmic domain deletions on the recruitment of the integrin αvβ6 to focal contacts. Cell Adhes. Comm. 1994; 2: 101–113
  • ĎSouza S. E., Ginsberg M. H., Burke T. A., Lam S. C. T., Plow E. F. Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science 1988; 242: 91–93
  • ĎSouza S. E., Ginsberg M. H. T, Burke A., Plow E. F. The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its a subunit. J. Biol. Chem. 1990; 265: 3440–3446
  • ĎSouza S. E., Haas T. A., Piotrowicz R. S., Byersward V., McGrath D. E., Soule H. R., Cierniewski C., Plow E. F., Smith J. W. Ligand and cation binding are dual functions of a discrete segment of the integrin beta(3) sub-unit: Cation displacement is involved in ligand binding. Cell 1994; 79: 659–667
  • Dahl S. C., Grabel L. B. Integrin phosphorylation is modulated during the differentiation of F-9 terato-carcinoma cells. J. Cell Biol. 1989; 108: 183–190
  • Du X., Plow E. F., Frelinger A. L., III, O'Toole T E., Loftus J. C., Ginsberg M. H. Ligands “activate” integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 1991; 65: 409–416
  • Faull R. J., Korvach N. L., Harlan J. M., Ginsberg M. H. Affinity modulation of integrin α5β1: regulation of the functional response by soluble fibronectin. J. Cell Biol. 1993; 121: 155–162
  • Filardo E. J., Cheresh D. A. A beta turn in the cytoplasmic tail of the integrin alpha v subunit influences conformation and ligand binding of alpha v beta 3. J. Biol. Chem. 1994; 269: 4641–4647
  • Filardo E. J., Brooks P C., Demmg S. L., Damsky C., Cheresh D. Requirement of the NPXY motif in the integrin S3 subunit cytoplasmic tail for melanoma cell migration in vitro and in vivo. J. Cell Biol. 1995; 130: 441–450
  • Freed E., Gailit I., van der Geer P., Ruoslahti E., Hunter T. A novel integrin β subunit is associated with the vitronectin receptor α subunit (αv) in a human osteosarcoma cell line and is a substrate for protein kinase C. EMBO (Eur. Mol. Biol. Organ. 1989; 8: 2955–2965
  • Ginsberg M. H., Du X., Plow E. F. Inside-out integrin signaling. Curr. Opin. Cell Biol. 1992; 4: 766–771
  • Haas T. A., Plow E. F. Integnn-ligand interactions : a year in review. Curr. Opin. Cell Biol. 1994; 6: 656–662
  • Hayashi Y. B., Haimowich A., Reszka D., Boettiger and Horwitz A. Expression and function of chicken integrin β1 subunit and its cytoplasmic domain mutants in mouse NIH 3T3 cells. J. Cell Biol. 1990; 110: 175–184
  • Hibbs M. L., Jakes S. A., Wallace R. W., Springer T. A. The cytoplasmic domain of the integrin lymphocyte function-associated antigen 1 β subunit: sites required for binding to intercellular adhesion molecule 1 and the phorbol ester-stimulated phosphorylation site. J. Exp. Med. 1991; 174: 1227–1238
  • Hillery C. A., Smyth S. S., Parise L. V. Phosphorylation of human platelet glycoprotein-IIIa (GPIIIa)- Dissociation from fibrinogen receptor activation and phosphorylation of GPIIIIa in vitro. J. Biol. Chem. 1991; 266: 14663–14669
  • Hirst R., Horwitz A., Buck C., Rohrschneider L. R. Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc. Natl. Acad. Sci. USA 1986; 83
  • Horvath A. R., Elmore M. A., Kellie S. Differential tyrosine-specific phosphorylation of integnn Rous sarcoma virus transformed cells with differing transformed phenotypes. Oncogene 1990; 5: 1349–1357
  • Hynes R. O. Integrins-Versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11–25
  • Johansson M W., Larsson E., Luning B., Pasquale E. B., Ruoslahti E. Altered localization and cytoplasmic domain-binding properties of tvrosine-phosphonlated beta(l) integrin. J. Cell Biol. 1994; 126: 1299–1309
  • Kieffer N., Fitzgerald L. A., Wolf D. L., Cheresh D. A., Phillips D. R. Adhesive properties of the β3 integrins: comparison of GPIIb-IIIa and the vitronectin receptor individually expressed in human melanoma cells. J. Cell Biol. 1991; 113: 451–461
  • Kieffer N., Phillips D. R. Platelet membiane glycoproteins: functions in cellular interactions. Anna. Rev. Cell Biol. 1990; 6: 329–357
  • LaFlamme S. E., Thomas L. A., Yamada S. S., Yamada K. M. Single subunit chimeric integrins as mimics and inhibitors of endogenous Integrin functions in receptor localization, cell spreading and migration, and matrix assembly. J. Cell Biol. 1994; 126: 1287–1298
  • Loftus J., Smith C. J. W., Ginsberg M. H. Integrin-mediated cell adhesion: The extracellular face. J. Biol. Chem. 1994; 269: 25235–25238
  • Marcantonio E. E., Guan J. L., Trevifhick J. E., Hynes R. O. Mapping of the functional determinants of the integrin beta I cytoplasmic domain by site-directed mutagenesis. Cell Regul. 1990; 1: 597–604
  • Markwell M. A. K., Haas S. M., Lieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane lipoprotein samples. Anal. Biochein. 1978; 87: 206–209
  • Miyamoto S., Akiyama K., Yamada K. M. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 1995; 267: 883–885
  • Mum T. W., Williams M. J., Ginsberg M. H., Kent S. B. Design and chemical synthesis of a neoprotein structural model for the cytoplasmic domain of a multisub-unit cell-surface receptor: integrin αIIbβ3 (Platelet GPIIb-IIIa). Biochemistry 1994; 33: 7701–7708
  • O'Toole T. E., Katagari Y., Faulk R. J., Peter K., Tamura R., Quaranta V., Loftus J., Shattil S. J., Ginsberg M. Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol. 1994; 124: 1047–1059
  • O'Toole T. E., Mandelman D., Forsyth J., Shattil S., Plow E. F., Ginsberg M. H. Modulation of the affinity of integrin αIIbβ3 (GPIIb-IIIa) by the cytoplasmic domain of allb. Science 1991; 254: 845–847
  • O'Toole T. E., Ylanne J., Culley B. M. Regulation of integrin affinity states through an NPXY motif in the β subunit cytoplasmic domain. J. Biol. Chem. 1995; 270: 8553–8558
  • Parise L. V., Criss A. B., Nannizzi L., Wardell M. R. Glycoprotein Ilia is phosphorylated in intact human platelets. Blood 1990; 75: 2363–2368
  • Parise L. V., Helgerson S. L., Steiner B., Nannizzi L., Phillips D. R. Synthetic peptides derived from fibrinogen and fibronectin change the conformation of purified platelet glycoprotein IIb-IIIa. J. Biol. Client 1987; 262: 12597–12602
  • Pasqualini R., Hemler M. E. Contrasting roles for integrin-beta(1) and integrin-beta(5) cytoplasmic domains in subcellular localization, cell proliferation, and cell migration. J. Cell Biol. 1994; 125: 447–460
  • Reszka A. A., Hayashi Y., Horwitz A. F. Identification of amino acid sequences in the integrin-betal cytoplasmic domain implicated in cytoskeletal association. J. Cell Biol. 1992; 117: 1321–1330
  • Sastry S. K., Horwitz A. F. Integrin cytoplasmic domain: mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signalling. Curr. Opin. Cell Biol. 1993; 5: 819–831
  • Shattil S. J., Hoxie J., Cunningham M., Brass L. Changes in the platelet membrane glycoprotein IIb-IIIa complex during platelet activation. J. Biol. Chem. 1985; 260: 11107–11114
  • Shaw L. M., Messier J. M., Mercurio A. M. The activation dependent adhesion of macrophages to laminin involves cvtoskeletal anchoring and phosphorylation of the α6β1 integrin. J. Cell Biol. 1990; 110: 2167–2174
  • Smith J. W., Cheresh D. A. The Arg-Gly-Asp binding domain of the vitronectin receptor. J. Biol. Chem. 1988; 263: 18726–18731
  • Smith J. W., Cheresh D. A. Integnn αvβ3-ligand interaction. Identification of a heterodimeric RGD binding site on the vitronectin receptor. J. Biol. Chem. 1990; 265: 2168–2172
  • Solowska J., Edelman J. M., Albelda S. M., Buck C. A. Cytoplasmic and transmembrane domains of integrin beta-1 and beta-3 stibtinits are functionally interchangeable. J. Cell Biol. 1991; 114: 1079–1088
  • Solowska J., Guan J. L., Marcantonio E. E., Trevithick J. E., Buck C. A., Hynes R. O. Expression of normal and mutant avian integrin subunits in rodent cells. J. Cell Biol. 1989; 109: 853–861
  • Watt F M., Kubler M. D., Hotchin N. A., Nicholson L. J., Adams J. C. Regulation of keratinocyte terminal differentiation by integrm-extracellular matrix interactions. J. Cell Sci. 1993; 106: 175–182
  • Werb Z., Tremble P. M., Behrendsten O., Crowley E., Camsky C. H. Signal transduction through the fibronectin receptor induces collagenase and stromeiysin gene expression. J. Cell Biol. 1989; 109: 877–889
  • Ylänne J., Chen Y. P., O'Toole T. E., Loftus J. C., Takada Y., Ginsberg M. H. Distinct functions of integrin a and b subunit cytoplasmic domains in cell spreading and formation of focal adhesion. J. Cell Biol. 1993; 122: 223–233
  • Ylänne J., Huuskonen J., O'Toole T. E., Ginsberg M. H., Virtanen I., Gahmberg C. G. Mutation of the cytoplasmic domain of the integrin β3 subunit. Differential effects on cell spreading, recruitment to adhesion plaques, endocytosis, and phagocytosis. J. Biol. Client 1995; 270: 9550–9557

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.