922
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Serrumab: A novel human single chain-fragment antibody with multiple scorpion toxin-neutralizing capacities

, , , , &
Pages 133-140 | Received 17 Dec 2012, Accepted 23 May 2013, Published online: 03 Sep 2013

References

  • Abdelkader, S. V., Gudding, R., and Nordstoga, K. 1991. Clinical chemical constituents in relation to liver amyloidosis in serum-producing horses. J. Comp. Pathol. 105:203–211
  • Amaro, I., Riano-Umbarila, L., Becerril, B., and Possani, L. D. 2011. Isolation and characterization of a human antibody fragment specific for Ts1 toxin from Tityus serrulatus scorpion. Immunol. Lett. 139:73–79
  • Angulo, Y., Estrada, R., and Gutierrez, J. M. 1997. Clinical and laboratory alterations in horses during immunization with snake venoms for the production of polyvalent (Crotalinae) anti-venom. Toxicon 35:81–90
  • Arantes, E. C., Prado, W. A., Sampaio, S. V., and Giglio, J. R. 1989. A simplified procedure for the fractionation of Tityus serrulatus venom: isolation and partial characterization of TsTX-IV, a new neurotoxin. Toxicon 27:907–916
  • Arantes, E. C., Riccioppo Neto, F., Sampaio, S. V., et al. 1994. Isolation and characterization of TsTX-V, a new neurotoxin from Tityus serrulatus scorpion venom which delays the inactivation of Na+ channels. Biochim. Biophys. Acta 1199:69–75
  • Barhanin, J., Ildefonse, M., Roughier, O., et al. 1984. Tityus gamma toxin, a high affinity effector of the Na+ channel in muscle, with a selectivity for channels in the surface membrane. Pflugers Arch. 400:22–27
  • Barrio, A., and Vital Brazil, G. 1949. Ein neues Verfahren der Giften Nahme ber Spinnen (A new method of poisons name on spiders). Experientia 6:112--113
  • Bertazzi, D. T., De Assis-Pandochi, A. I., Azzolini, A. E., et al. 2003. Effect of Tityus serrulatus scorpion venom and its major toxin, TsTX-I, on the complement system in vivo. Toxicon 41:501–508
  • Billen, B., Debaveye, S., Beress, L., et al. 2010. Phyla- and subtype-selectivity of CgNa, a Na channel toxin from the venom of the giant Caribbean Sea anemone Condylactis gigantea. Front. Pharmacol. 1:133
  • Catterall, W. A., Cestele, S., Yarov-Yarovoy, V., et al. 2007. Voltage-gated ion channels and gating modifier toxins. Toxicon 49:124–141
  • Chippaux, J. P., and Goyffon, M. 1998. Venoms, anti-venoms, and immunotherapy. Toxicon 36:823–846
  • Cohen, L., Karbat, I., Gilles, N., et al. 2004. Dissection of the functional surface of an anti-insect excitatory toxin illuminates a putative “hot spot” common to all scorpion β-toxins affecting Na+ channels. J. Biol. Chem. 279:8206–8211
  • Cohen, L., Karbat, I., Gilles, N., et al. 2005. Common features in the functional surface of scorpion β-toxins and elements that confer specificity for insect and mammalian voltage-gated sodium channels. J. Biol. Chem. 280:5045–5053
  • Cologna, C. T., Peigneur, S., Rustiguel, J. K., et al. 2012. Investigation of the relationship between structure and function of Ts2, a neurotoxin from Tityus serrulatus venom. FEBS J. 279:1495–1504
  • Correa, M. M., Sampaio, S. V., Lopes, R. A., et al. 1997. Biochemical and histopathological alterations induced in rats by Tityus serrulatus scorpion venom and its major neurotoxin tityustoxin-I. Toxicon 35:1053–1067
  • Cromwell, H. W. 1925. Quantitative relations between antigen and antibody in the precipitin reaction. J. Infect. Dis. 37:321--328
  • Estrada, G., Restano-Cassulini, R., Oriz, E., et al. 2011. Addition of positive charges at the C-terminal peptide region of CssII, a mammalian scorpion peptide toxin, improves its affinity for sodium channels Nav1.6. Peptides 32:75–79
  • Guglick, M. A., Macallister, C. G., Ely, R. W., and Edwards, W. C. 1995. Hepatic disease associated with administration of tetanus antitoxin in eight horses. J. Am. Vet. Med. Assoc. 206:1737–1740
  • Karbat, I., Turkov, M., Cohen, L., et al. 2007. X-Ray structure and mutagenesis of the scorpion depressant toxin LqhIT2 reveals key determinants crucial for activity and anti-insect selectivity. J. Mol. Biol. 366:586–601
  • Mendes, T. M., Dias, F., Horta, C. C., et al. 2008. Effective Tityus serrulatus anti-venom produced using the Ts1 component. Toxicon 52:787–793
  • Pessini, A. C., De Souza, A. M., Faccioli, L. H., et al. 2003. Time-course of acute-phase response induced by Tityus serrulatus venom and TsTX-I in mice. Int. Immunopharmacol. 3:765–774
  • Petricevich, V. L., and Lebrun, I. 2005. Immunomodulatory effects of the Tityus serrulatus venom on murine macrophage functions in vitro. Med. Inflamm. 2005:39–49
  • Polikarpov, I., Junior, M. S., Marangoni, S., et al. 1999. Crystal structure of neurotoxin Ts1 from Tityus serrulatus provides insights into the specificity and toxicity of scorpion toxins. J. Mol. Biol. 290:175–184
  • Possani, L. D., Alagon, A. C., Fletcher, P. L. Jr., and Erickson, B. W. 1977. Purification and properties of mammalian toxins from the venom of Brazilian scorpion Tityus serrulatus Lutz and Mello. Arch. Biochem. Biophys. 180:394–403
  • Possani, L. D., Becerrilo, B., Delepierre, M., and Tytgat, J. 1999. Scorpion toxins specific for Na+-channels. Eur. J. Biochem. 264:287–300
  • Pucca, M. B., Zoccal, K. F., Roncoloato, E. C., et al. (2012). Serrumab: A human monoclonal antibody that counters the biochemical and immunological effects of Tityus serrulatus venom. J. Immunotoxicol. 9:173--183
  • Riano-Umbarila, L., Contreras-Ferrat, G., Olamendi-Portugal, T., et al. 2011. Exploiting cross-reactivity to neutralize two different scorpion venoms with one single chain antibody fragment. J. Biol. Chem. 286:6143–6151
  • Rodriguez de la Vega, R. C., and Possani, L. D. 2005. Overview of scorpion toxins specific for Na+ channels and related peptides: Biodiversity, structure-function relationships, and evolution. Toxicon 46:831–844
  • Saúde, Portal da. (Health Portal) 2012. Acidentes por animais peçonhentos: Escorpiões, Aspectos Epidemiológicos. (Accidents by venemous animals: Scorpions, epidemiological aspects). Available from: http://portalsaude.saude.gov.br/portalsaude/index.cfm?portal=pagina.visualizarTexto&codConteudo=5818&codModuloArea=783&chamada=acidentes-por-escorpioes [date accessed 30 July 2013]
  • Sampaio, S. V., Arantes, E. C., Prado, W. A., et al. 1991. Further characterization of toxins T1iv (Tstx-Iii) and T2iv from Tityus serrulatus scorpion venom. Toxicon 29:663–672
  • Sampaio, S. V., Laure, C. J., and Giglio, J. R. 1983. Isolation and characterization of toxic proteins from the venom of the Brazilian scorpion Tityus serrulatus. Toxicon 21:265–277
  • Shawler, D. L., Bartholemew, R. M., Smith, L. M., and Dillman, R. O. 1985. Human immune response to multiple injections of murine monoclonal IgG. J. Immunol. 135:1530–1535
  • Stevens, M., Peigneur, S., and Tytgat, J. 2011. Neurotoxins and their binding areas on voltage-gated sodium channels. Front. Pharmacol. 2:71
  • Teixeira, V. F., Conceicao, I. M., Lebrun, I., et al. 2010. Intra-hippocampal injection of TsTX-I, a β−scorpion toxin, causes alterations in electroence-phalographic recording and behavior in rats. Life Sci. 87:501–506
  • Theakston, R. D., Warrell, D. A., and Griffiths, E. 2003. Report of a WHO Workshop on the standardization and control of anti-venoms. Toxicon 41:541–557
  • Tytgat, J., Maertens, C., and Daenens, P. 1997. Effect of fluoxetine on a neuronal, voltage-dependent potassium channel (Kv1.1). Br. J. Pharmacol. 122:1417–1424
  • Vasconcelos, F., Lanchote, V. L., Bendhack, L. M., et al. 2005. Effects of voltage-gated Na+ channel toxins from Tityus serrulatus venom on rat arterial blood pressure and plasma catecholamines. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 141:85–92
  • Vijverberg, H. P., and Lazdunski, M. 1984. A new scorpion toxin with a very high affinity for sodium channels. An electrophysiological study. J. Physiol. (Paris) 79:275–279
  • Warmke, J. W., Reenan, R. A., Wang, P., et al. 1997. Functional expression of Drosophila para sodium channels. Modulation by the membrane protein TipE and toxin pharmacology. J. Gen. Physiol. 110:119–133
  • Weir, D. M. 1963. Antigen-antibody reactions. Mod. Trends Immunol. 55:53–85
  • Wilde, H., Thipkong, P., Sitprija, V., and Chaiyabutr, N. 1996. Heterologous anti-sera and anti-venins are essential biologicals: Perspectives on a worldwide crisis. Ann. Intern. Med. 125:233–236

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.