13,836
Views
401
CrossRef citations to date
0
Altmetric
Review Article

Immunogenicity of therapeutic proteins: Influence of aggregation

, , &
Pages 99-109 | Received 30 May 2013, Accepted 28 Jun 2013, Published online: 06 Aug 2013

References

  • Abbas, A. K., Lohr, J., Knoechel, B., and Nagabhushanam, V. 2004. T-Cell tolerance and autoimmunity. Autoimmun. Rev. 3:471–475
  • Acosta-Sampson, L., and King, J. 2010. Partially folded aggregation intermediates of human yD-, yC-, and yS-crystallin are recognized and bound by human αB-crystallin chaperone. J. Mol. Biol. 401:134–152
  • Andrews, S. F., and Wilson, P. C. 2010. The anergic B-cell. Blood 115:4976–4978
  • Andya, J. D., Hsu, C. C., and Shire, S. J. 2003. Mechanisms of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations. AAPS pharmSci. 5:21–31
  • Arakawa, T., Kita, Y., and Carpenter, J. F. 1991. Protein-solvent interactions in pharmaceutical formulations. Pharm. Res. 8:285–291
  • Avery, D. T., Bryant, V. L., Ma, C. S., et al. 2008. IL-21-induced isotype switching to IgG and IgA by human naive B-cells is differentially regulated by IL-4. J. Immunol. 181:1767–1779
  • Babin, C., Majeau, N., and Leclerc, D. 2013. Engineering of papaya mosaic virus (PapMV) nanoparticles with a CTL epitope derived from influenza NP. J. Nanobiotech. 11:1477–3155
  • Babiuk, S., Skowronski, D. M., De Serres, G., et al. 2004. Aggregate content influences the THl/TH2 immune response to influenza vaccine: Evidence from a mouse model. J. Med. Virol. 72:138–142
  • Bachmann, M. F., and Zinkernagel, R. M. 1997. Neutralizing antiviral B-cell responses. Ann. Rev. Immunol. 15:235–270
  • Bachmann, M. F., Rohrer, U. H., Kundig, T. M., et al. 1993. The influence of antigen organization on B-cell responsiveness. Science 262:1448–1451
  • Baudouin, V., Crusiaux, A., Haddad, E., et al. 2003. Anaphylactic shock caused by immunoglobulin E sensitization after pre-treatment with chimeric anti-IL-2 receptor monoclonal antibody basiliximab. Transplantation 76:459–463
  • Bennett, C. L., Luminari, S., Nissenson, A. R., et al. 2004. Pure red-cell aplasia and epoetin therapy. New Engl. J. Med. 351:1403–1408
  • Boven, K., Knight, J., Bader, F., et al. 2005a. Epoetin-associated pure red cell aplasia in patients with chronic kidney disease: Solving the mystery. Nephrol. Dialysis Transplant. 20:33–40
  • Boven, K., Stryker, S., Knight, J., et al. 2005b. The increased incidence of pure red cell aplasia with an Eprex formulation in uncoated rubber stopper syringes. Kidney Int. 67:2346–2353
  • Bratko, D., Cellmer, T., Prausnitz, J. M., and Blanch, H. W. 2006. Effect of single-point sequence alterations on the aggregation propensity of a model protein. J. Am. Chem. Soc. 128:1683–1691
  • Brinks, V., Jiskoot, W., and Schellekens, H. 2011. Immunogenicity of therapeutic proteins: The use of animal models. Pharm. Res. 28:2379–2385
  • Carpenter, J. F., Randolph, T. W., Jiskoot, W., et al. 2009. Overlooking subvisible particles in therapeutic protein products: Gaps that may compromise product quality. J. Pharm. Sci. 98:1201–1205
  • Casadevall, N., Nataf, J., Viron, B., et al. 2002. Pure red-cell aplasia and anti-erythropoietin antibodies in patients treated with recombinant erythropoietin. New Engl. J. Med. 346:469–475
  • Cellmer, T., Bratko, D., Prausnitz, J. M., and Blanch, H. W. 2007. Protein aggregation in silico. Trends Biotech. 25:254–261
  • Chennamsetty, N., Voynov, V., Kayser, V., et al. 2009. Design of therapeutic proteins with enhanced stability. Proc. Natl. Acad. Sci. USA 106:11937–11942
  • Chi, E. Y., Krishnan, S., Randolph, T. W., and Carpenter, J. F. 2003. Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation. Pharm. Res. 20:1325–1336
  • Chou, D. K., Krishnamurthy, R., Randolph, T. W., et al. 2005. Effects of Tween 20 (R) and Tween 80 (R) on the stability of albutropin during agitation. J. Pharm. Sci. 94:1368–1381
  • Cromwell, M. E., Hilario, E., and Jacobson, F. 2006. Protein aggregation and bioprocessing. AAPS J. 8:E572–E579
  • Dasnoy, S., Dezutter, N., Lemoine, D., et al. 2011. High-throughput screening of excipients intended to prevent antigen aggregation at air-liquid interface. Pharm. Res. 28:1591–1605
  • de Groot, A. S., and Martin, W. 2009. Reducing risk, improving outcomes: Bioengineering less immunogenic protein therapeutics. Clin. Immunol. 131:189–201
  • den Engelsman, J., Garidel, P., Smulders, R., et al. 2011. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm. Res. 28:920–933
  • Denis, J., Majeau, N., Acosta-Ramirez, E., et al. 2007. Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: Evidence for the critical function of multimerization. Virology 363:59–68
  • DePalma, A. 2006. Improving stability while adding value. Gen. Eng. News 26:[online]. Available at: http://www.genengnews.com/gen-articles/improving-stability-while-adding-value/1259/. [last accessed 22 Apr 2013]
  • Ellis, E. F., and Henney, C. S. 1969. Adverse reactions following administration of human gamma globulin. J. Allergy 43:45–54
  • Everds, N. E., and Tarrant, J. M. 2013. Unexpected hematologic effects of biotherapeutics in nonclinical species and in humans. Toxicol. Pathol. 41:280–302
  • Farrell, R. A., Marta, M., Gaeguta, A. J., et al. 2012. Development of resistance to biologic therapies with reference to IFNβ. Rheumatology 51:590–599
  • Fink, A. L. 1998. Protein aggregation: Folding aggregates, inclusion bodies, and amyloid. Fold. Design 3:9–23
  • Fradkin, A. H., Carpenter, J. F., and Randolph, T. W. 2009. Immunogenicity of aggregates of recombinant human growth hormone in mouse models. J. Pharm. Sci. 98:3247–3264
  • Frokjaer, S., and Otzen, D. E. 2005. Protein drug stability: A formulation challenge. Nat. Rev. Drug Disc. 4:298–306
  • Gaitonde, P., and Balu-Iyer, S. V. 2011. In vitro immunogenicity risk assessment of therapeutic proteins in preclinical setting. Drug Design Disc. Meth. Protocols 716:267–280
  • Garbuzynskiy, S. O., Lobanov, M. Y., and Galzitskaya, O. V. 2010. FoldAmyloid: A method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26:326–332
  • Gidalevitz, D., Huang, Z. Q., and Rice, S. A. 1999. Protein folding at the air-water interface studied with x-ray reflectivity. Proc. Natl. Acad. Sci. USA 96:326–332
  • Hamada, H., Arakawa, T., and Shiraki, K. 2009. Effect of additives on protein aggregation. Curr. Pharm. Biotech. 10:400–407
  • Harding, F. A., Stickler, M. M., Razo, J., and DuBridge, R. B. 2010. The immunogenicity of humanized and fully human antibodies residual immunogenicity resides in the CDR regions. mAbs 2:256–265
  • Hari, S. B., Lau, H., Razinkov, V. I., et al. 2010. Acid-induced aggregation of human monoclonal IgG1 and IgG2: Molecular mechanism and the effect of solution composition. Biochemistry 49:9328–9338
  • Haselbeck, A. 2003. Epoetins: Differences and their relevance to immunogenicity. Curr. Med. Res. Opin. 19:430–432
  • Hermeling, S., Crommelin, D. J., Schellekens, H., and Jiskoot, W. 2004. Structure-immunogenicity relationships of therapeutic proteins. Pharm. Res. 21:897–903
  • Hermeling, S., Schellekens, H., Crommelin, D. J., and Jiskoot, W. 2003. Micelle-associated protein in epoetin formulations: A risk factor for immunogenicity? Pharm. Res. 20:1903–1907
  • Hermeling, S., Schellekens, H., Maas, C., et al. 2006. Antibody response to aggregated human interferon α2b in wild-type and transgenic immune tolerant mice depends on type and level of aggregation. J. Pharm. Sci. 95:1084–1096
  • Horbett, T. A. 1988. Molecular-origins of the surface-activity of proteins. Prot. Eng. 2:172–174
  • Hunziker, L., Recher, M., Macpherson, A. J., et al. 2003. Hyper-gamma-globulinemia and autoantibody induction mechanisms in viral infections. Nat. Immunol. 4:343–349
  • Johnson, I. S. 1983. Human insulin from recombinant DNA technology. Science 219:632–637
  • Joshi, O., Chu, L., McGuire, J., and Wang, D. Q. 2009. Adsorption and function of recombinant factor VIII at air-water interface in the presence of Tween 80. J. Pharm. Sci. 98:3099–3107
  • Josic, D., Buchacher, A., Kannicht, C., et al. 1999. Degradation products of factor VIII which can lead to increased immunogenicity. Vox Sanguinis 77:90–99
  • Joubert, M. K., Hokom, M., Eakin, C., et al. 2012. Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J. Biol. Chem. 287:25266–25279
  • Joubert, M. K., Luo, Q., Nashed-Samuel, Y., et al. 2011. Classification and characterization of therapeutic antibody aggregates. J. Biol. Chem. 286:25118–25133
  • Katakam, M., and Banga, A. K. 1995. Aggregation of insulin and its prevention by carbohydrate excipients. PDA J. Pharm. Sci. Tech. 49:160–165
  • Katakam, M., Bell, L. N., and Banga, A. K. 1995. Effect of surfactants on the physical stability of recombinant human growth hormone. J. Pharm. Sci. 84:713–716
  • Kerwin, B. A. 2008. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: Structure and degradation pathways. J. Pharm. Sci. 97:2924–2935
  • Kessler, M., Goldsmith, D., and Schellekens, H. 2006. Immunogenicity of biopharmaceuticals. Nephrol. Dialysis Transplant. 21:9–12
  • Kiese, S., Papppenberger, A., Friess, W., and Mahler, H. C. 2008. Shaken, not stirred: Mechanical stress testing of an IgG1 antibody. J. Pharm. Sci. 97:4347–4366
  • Kim, D. Y., and Yu, M. H. 1996. Folding pathway of human α1-antitrypsin: Characterization of an intermediate that is active but prone to aggregation. Biochem. Biophys. Res. Commun. 226:378–384
  • Kim, H. L., Leigh, R., and Becker, A. 2010. Omalizumab: Practical considerations regarding the risk of anaphylaxis. Allergy Asthma Clin. Immunol. 6:1--9
  • Koren, E., de Groot, A. S., Jawa, V., et al. 2007. Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin. Immunol. 124:26–32
  • Kossovsky, N., Heggers, J. P., and Robson, M. C. 1987. Experimental demonstration of the immunogenicity of silicone protein complexes. J. Biomed. Mat. Res. 21:1125–1133
  • Kouskoff, V., Lacaud, G., and Nemazee, D. 2000. T-Cell-independent rescue of B-lymphocytes from peripheral immune tolerance. Science 287:2501–2503
  • Kreilgaard, L., Frokjaer, S., Flink, J. M., et al. 1998a. Effects of additives on the stability of recombinant human factor XIII during freeze-drying and storage in the dried solid. Arch. Biochem. Biophys. 360:121–134
  • Kreilgaard, L., Jones, L. S., Randolph, T. W., et al. 1998b. Effect of Tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant, human factor XIII. J. Pharm. Sci. 87:1597–1603
  • Krishnan, S., and Raibekas, A. A. 2009. Multi-step aggregation pathway of human IL-1 receptor antagonist: Kinetic, structural, and morphological characterization. Biophys. J. 96:199–208
  • Krishnan, S., Chi, E. Y., Webb, J. N., et al. 2002. Aggregation of granulocyte colony stimulating factor under physiological conditions: Characterization and thermodynamic inhibition. Biochemistry 41:6422–6431
  • Lange, H., Zemlin, M., Tanasa, R. L., et al. 2008. Thymus-independent type 2 antigen induces a long-term IgG-related network memory. Mol. Immunol. 45:2847–2860
  • Locatelli, F., Del Vecchio, L., and Pozzoni, P. 2007. Pure red-cell aplasia “epidemic” - Mystery completely revealed? Periton. Dialysis Intl. 27:303–307
  • Maa, Y. F., and Hsu, C. C. 1997. Protein denaturation by combined effect of shear and air-liquid interface. Biotech. Bioeng. 54:503–512
  • Mahler, H. C., Muller, R., Friess, W., et al. 2005. Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur. J. Pharm. Biopharm. 59:407–417
  • Manning, M. C., Chou, D. K., Murphy, B. M., et al. 2010. Stability of protein pharmaceuticals: An update. Pharm. Res. 27:544–575
  • Moore, W. V., and Leppert, P. 1980. Role of aggregated human growth-hormone (hGH) in development of antibodies to hGH. J. Clin. Endocrinol. Metab. 51:691–697
  • Narhi, L. O., Schmit, J., Bechtold-Peters, K., and Sharma, D. 2012. Classification of protein aggregates. J. Pharm. Sci. 101:493–498
  • Ohashi, P. S., and DeFranco, A. L. 2002. Making and breaking tolerance. Curr. Opin. Immunol. 14:744–759
  • Panitch, H., Goodin, D. S., Francis, G., et al. 2002. Randomized, comparative study of IFNβ-1a treatment regimens in MS – The EVIDENCE trial. Neurology 59:1496–1506
  • Price, K. S., and Hamilton, R. G. 2007. Anaphylactoid reactions in two patients after omalizumab administration after successful long-term therapy. Allergy Asthma Proc. 28:313–319
  • Purohit, V. S., Middaugh, C. R., and Balasubramanian, S. V. 2006. Influence of aggregation on immunogenicity of recombinant human factor VIII in hemophilia A mice. J. Pharm. Sci. 95:358–371
  • Qian, F., Reiter, K., Zhang, Y. L., et al. 2012. Immunogenicity of self-associated aggregates and chemically crosslinked conjugates of the 42 kDa plasmodium falciparum merozoite surface protein-1. Plos One 7:e36996
  • Radstake, T. R., Svenson, M., Eijsbouts, A. M., et al. 2009. Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical responses in rheumatoid arthritis. Ann. Rheum. Dis. 68:1739–1745
  • Ragheb, S., and Lisak, R. P. 2011. B-Cell-activating factor and autoimmune myasthenia gravis. Autoimm. Dis. 2011:939520
  • Rosenberg, A. S. 2006. Effects of protein aggregates: An immunologic perspective. AAPS J. 8:501–507
  • Ross, C., Clemmesen, K. M., Svenson, M., et al. Danish Multiple Sclerosis. 2000. Immunogenicity of IFNβ in multiple sclerosis patients: Influence of preparation, dosage, dose frequency, and route of administration. Ann. Neurol. 48:706–712
  • Rudra, J. S., Tripathi, P. K., Hildeman, D. A., et al. 2010. Immune responses to coiled coil supra-molecular biomaterials. Biomaterials 31:8475–8483
  • Ryff, J. C. 1997. Clinical investigation of the immunogenicity of IFNα2a. J. Interferon Cytokine Res. 17:29–33
  • Sauerborn, M., Brinks, V., Jiskoot, W., and Schellekens, H. 2010. Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol. Sci. 31:53–59
  • Schaefer, J. V., and Plueckthun, A. 2012. Engineering aggregation resistance in IgG by two independent mechanisms: Lessons from comparison of Pichia pastoris and mammalian cell expression. J. Mol. Biol. 417:309–335
  • Schellekens, H. 2010. The immunogenicity of therapeutic proteins. Disc. Med. 9:560–564
  • Schernthaner, G. 1993. Immunogenicity and allergenic potential of animal and human insulins. Diabetes Care 16:155–165
  • Schrodel, A., and de Marco, A. 2005. Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem. 6:1--11
  • Scott, D. W., and de Groot, A. S. 2010. Can we prevent immunogenicity of human protein drugs? Ann. Rheum. Dis. 69:72–76
  • Serno, T., Carpenter, J. F., Randolph, T. W., and Winter, G. 2010. Inhibition of agitation-induced aggregation of an IgG-antibody by hydroxypropyl-β-cyclodextrin. J. Pharm. Sci. 99:1193–1206
  • Shankar, G., Shores, E., Wagner, C., and Mire-Sluis, A. 2006. Scientific and regulatory considerations on the immunogenicity of biologics. Trends Biotech. 24:274–280
  • Singh, S. K. 2011. Impact of product-related factors on immunogenicity of biotherapeutics. J. Pharm. Sci. 100:354–387
  • Skowronski, D. M., Lu, H., Warrington, R., et al. 2003a. Does antigen-specific cytokine response correlate with the experience of oculo-respiratory syndrome after influenza vaccine? J. Infect. Dis. 187:495–499
  • Skowronski, D. M., Strauss, B., De Serres, G., et al. 2003b. Oculo-respiratory syndrome: A new influenza vaccine-associated adverse event? Clin. Infect. Dis. 36:705–713
  • Sluzky, V., Tamada, J. A., Klibanov, A. M., and Langer, R. 1991. Kinetics of insulin aggregation in aqueous-solutions upon agitation in the presence of hydrophobic surfaces. Proc. Natl. Acad. Sci. USA 88:9377–9381
  • Soulas, P., Woods, A., Jaulhac, B., et al. 2005. Autoantigen, innate immunity, and T-cells cooperate to break B-cell tolerance during bacterial infection. J. Clin. Invest. 115:2257–2267
  • Spellberg, B., and Edwards, J. E. 2001. Type 1 and Type 2 immunity in infectious diseases. Clin. Infect. Dis. 32:76–102
  • Szomolanyi-Tsuda, E., and Welsh, R. M. 1998. T-Cell-independent antiviral antibody responses. Curr. Opin. Immunol. 10:431–435
  • Tang, X. L., and Pikal, M. J. 2004. Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharm. Res. 21:191–200
  • Thirumangalathu, R., Krishnan, S., Ricci, M. S., et al. 2009. Silicone oil- and agitation-induced aggregation of a monoclonal antibody in aqueous solution. J. Pharm. Sci. 98:3167–3181
  • Tobery, T. W., Dubey, S. A., Anderson, K., et al. 2006. A comparison of standard immunogenicity assays for monitoring HIV type 1 gag-specific T cell responses in ad5 HIV type 1 gag vaccinated human subjects. Aids Res. Hum. Retrov. 22:1081–1090
  • Tovey, M. G., Legrand, J., and Lallemand, C. 2011. Overcoming immunogenicity associated with the use of biopharmaceuticals. Expert Rev. Clin. Pharmacol. 4:623–631
  • Townsend, M. W., and Deluca, P. P. 1990. Stability of ribonuclease-A in solution and the freeze-dried state. J. Pharm. Sci. 79:1083–1086
  • Treuheit, M. J., Kosky, A. A., and Brems, D. N. 2002. Inverse relationship of protein concentration and aggregation. Pharm. Res. 19:511–516
  • van Beers, M. M., Sauerborn, M., Gilli, F., et al. 2010. Aggregated recombinant human IFNβ induces antibodies but no memory in immune-tolerant transgenic mice. Pharm. Res. 27:1812–1824
  • van Beers, M. M. C., Sauerborn, M., Gilli, F., et al. 2011. Oxidized and aggregated recombinant human IFNβ is immunogenic in human IFNβ transgenic mice. Pharm. Res. 28:2393–2402
  • Villalobos, A. P., Gunturi, S. R., and Heavner, G. A. 2005. Interaction of polysorbate 80 with erythropoietin: A case study in protein-surfactant interactions. Pharm. Res. 22:1186–1194
  • Wadhwa, M., and Thorpe, R. 2007. Unwanted immunogenicity: Implications for follow-on biologicals. Drug Inform. J. 41:1–10
  • Wang, J., Lozier, J., Johnson, G., et al. 2008. Neutralizing antibodies to therapeutic enzymes: Considerations for testing, prevention and treatment. Nat. Biotech. 26:901–908
  • Wang, X., Das, T. K., Singh, S. K., and Kumar, S. 2009. Potential aggregation-prone regions in biotherapeutics. A survey of commercial monoclonal antibodies. mAbs 1:254–267
  • Wang, W., Singh, S. K., Li, N., et al. 2012. Immunogenicity of protein aggregates-Concerns and realities. Int. J. Pharm. 431:1–11
  • Weiss, W. F., Young, T. M., and Roberts, C. J. 2009. Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J. Pharm. Sci. 98:1246–1277
  • Zoells, S., Tantipolphan, R., Wiggenhorn, M., et al. 2012. Particles in therapeutic protein formulations, Part 1: Overview of analytical methods. J. Pharm. Sci. 101:914–935