1,921
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Characterization of the modes of action of deoxynivalenol (DON) in the human Jurkat T-cell line

, , &
Pages 206-216 | Received 17 Feb 2014, Accepted 14 May 2014, Published online: 02 Jul 2014

References

  • Antonissen, G., Martel, A., Pasmans, F., Ducatelle, R., Verbrugghe, E., Vandenbroucke, V., Li, S., Haesebrouck, F., Van Immerseel, F., Croubels, S. 2014. The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins (Basel) 6:430–452
  • Baek, S. H., Kim, J. Y., Choi, J. H., et al. 2000. Reduced glutathione oxidation ratio and 8-OH-dG accumulation by mild ischemic pre-treatment. Brain Res. 856:28–36
  • Bensassi, F., Gallerne, C., Sharaf el Dein, O., et al. 2012. Involvement of mitochondria-mediated apoptosis in deoxynivalenol cytotoxicity. Food Chem. Toxicol. 50:1680–1689
  • Bhat, R., Ramakrishna, Y., Beedu, S., and Munshi, K. L. 1989. Outbreak of trichothecene myco-toxicosis associated with consumption of mold-damaged wheat production in Kashmir Valley, India. Lancet 333:35–37
  • Castillo, M. A., Montes, R., Navarro, A., et al. 2008. Occurrence of deoxynivalenol and nivalenol in Spanish corn-based food products. J. Food Comp. Anal. 21:423–427
  • European Food Safety Authority (EFSA) European Food Safety Authority. 2013. Deoxynivalenol in food and feed: Occurrence and exposure. EFSA J. 11:3379–3435
  • Fisher, W. G., Yang, P. C., Medikonduri, R. K., and Jafri, M. S. 2006. NFAT and NF-κB activation in T-lymphocytes: A model of differential activation of gene expression. Ann. Biomed. Engineer. 34:1712–1728
  • Gray, J. S., and Pestka, J. J. 2007. Transcriptional regulation of deoxynivalenol-induced IL-8 expression in human monocytes. Toxicol. Sci. 99:502–511
  • Hu, P., Han, Z., Couvillon, A. D., and Exton, J. H. 2004. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem. 279:49420–49429
  • Jayanthi, S., Deng, X., Ladenheim, B., 2005. Calcineurin/NFAT-induced up-regulation of Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proc. Natl. Acad. Sci. USA 102:868–873
  • Jeruc, J., Vizjak, A., Rozman, B., and Ferluga, D. 2006. Immunohistochemical expression of activated caspase-3 as a marker of apoptosis in glomeruli of human lupus nephritis. Am. J. Kidney Dis. 48:410–418
  • Kalaiselvi, P., Rajashree, K., Priya, L. B., and Padma, V. V. 2013. Cytoprotective effect of epigallocatechin-3-gallate against deoxynivalenol-induced toxicity through anti-oxidative and anti-inflammatory mechanisms in HT-29 cells. Food Chem. Toxicol. 56:110–118
  • Katika, M. R., Hendriksen, P. J., Shao, J., et al. 2012. Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): New mechanistic insights. Toxicol. Appl. Pharmacol. 264:51–64
  • Kim, D., Lee, I., Do, W., et al. 2014. Incidence and levels of deoxynivalenol, fumonisins, and zearalenone contaminants in animal feeds used in Korea in 2012. Toxins 6:20–32
  • Kinser, S., Jia, Q., Li, M., et al. 2004. Gene expression profiling in spleens of deoxynivalenol-exposed mice: Immediate early genes as primary targets. J. Toxicol. Environ. Health 67:1423–1441
  • Krishnaswamy, R., Devaraj, S. N., and Padma, V. V. 2010. Lutein protects HT-29 cells against deoxynivalenol-induced oxidative stress and apoptosis: Prevention of NF-κB nuclear localization and down regulation of NF-κB and cyclo-oxygenase-2 expression. Free Rad. Biol. Med. 49:50–60
  • Lee, J. M., and Johnson, J. A. 2004. An important role of Nrf2-ARE pathway in the cellular defense mechanism. J. Biochem. Mol. Biol. 37:139–143
  • Li, D., Ye, Y., Lin, S., et al. 2013. Evaluation of deoxynivalenol-induced toxic effects on DF-1 cells in vitro: Cell-cycle arrest, oxidative stress, and apoptosis. Environ. Toxicol. Pharmacol. 37:141–149
  • Luo, X. 1988. Outbreaks of moldy cereals poisoning in China. Issues of Food Safety. Washington, DC: Toxicology Forum, Inc., pp. 56–63
  • Luo, X. 1994. Food poisoning caused by Fusarium toxins. In: Proceedings of the Second Asian Conference on Food Safety, 18–23 September 1994, Bangkok, Thailand. pp. 129–136
  • Luukkonen, J., Hakulinen, P., Maki-Paakkanen, J., Juutilainen, J., Naarala, J. 2009. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Mutat Res. 662:54-58
  • Ma, Y., Zhang, A., Shi, Z., et al. 2012. A mitochondria-mediated apoptotic pathway induced by deoxynivalenol in human colon cancer cells. Toxicol. In Vitro 26:414–420
  • Mashima, T., Udagawa, S., and Tsuruo, T. 2001. Involvement of transcriptional repressor ATF3 in acceleration of caspase protease activation during DNA damaging agent-induced apoptosis. J. Cell. Physiol. 188:352–358
  • Meky, F. A., Hardie, L. J., Evans, S. W., and Wild, C. P. 2001. Deoxynivalenol-induced immunomodulation of human lymphocyte proliferation and cytokine production. Food Chem. Toxicol. 39:827–836
  • Moon, Y., and Pestka, J. J. 2002. Vomitoxin-induced cyclooxygenase-2 gene expression in macrophages mediated by activation of ERK and p38 but not JNK mitogen-activated protein kinases. Toxicol. Sci. 69:373–382
  • Moon, Y., and Pestka, J. J. 2003. Cyclooxygenase-2 mediates IL-6 up-regulation by vomitoxin (deoxynivalenol) in vitro and in vivo. Toxicol. Appl. Pharmacol. 187:80–88
  • Nielsen, C., Lippke, H., Didier, A., et al. 2009. Potential of deoxynivalenol to induce transcription factors in human hepatoma cells. Mol. Nutr. Food Res. 53:479–491
  • Nishina, H., Wada, T., and Katada, T. 2004. Physiological roles of SAPK/JNK signaling pathway. J. Biochem. 136:123–126
  • Oyadomari, S., and Mori, M. 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11:381–389
  • Park, S. H., Choi, H. J., Yamg, H., et al. 2010. Repression of peroxisome proliferator-activated receptor gamma by mucosal ribotoxic insult-activated CCAAT/enhancer-binding protein homologous protein. J. Immunol. 185:5522–5530
  • Pestka, J. J. 2008. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:1128–1140
  • Pestka, J. J. 2010. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 84:663–679
  • Pestka, J. J., Uzarski, R. L., and Islam, Z. 2005a. Induction of apoptosis and cytokine production in the Jurkat human T-cells by deoxynivalenol: Role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. Toxicology 206:207–219
  • Pestka, J. J., Uzarski, R. L., and Islam, Z. 2005b. Induction of apoptosis and cytokine production in the Jurkat human T-cells by deoxynivalenol: Role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. Toxicology 206:207–219
  • Pestka, J. J., Yan, D., and King, L. E. 1994. Flow cytometric analysis of the effects of in vitro exposure to vomitoxin (deoxynivalenol) on apoptosis in murine T, B, and IgA+ cells. Food Chem. Toxicol. 32:1125–1136
  • Pestka, J. J., Zhou, H. R., Moon, Y., and Chung, Y. J. 2004. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett. 153:61–73
  • Ramakrishna, Y., Bhat, R. V., Ravindranath V. 1989. Production of deoxynivalenol by Fusarium isolates from samples of wheat associated with a human mycotoxicosis outbreak and from sorghum cultivars. Applied and Environmental Microbiology 55:2619–2620
  • Rasmussen, P. H., Ghorbani, F., and Berg, T. 2003. Deoxynivalenol and other Fusarium toxins in wheat and rye flours on the Danish market. Food Addit. Contam. 20:396–404
  • Robbanabarnat, S., Loridonrosa, B., Cohen, H., et al. 1987. Protein synthesis inhibition and cardiac lesions associated with deoxynivale-nol ingestion in mice. Food Additives Contam. 4:49–56
  • Rotter, B. A., Prelusky, D. B., and Pestka, J. J. 1996. Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Environ. Health 48:1–34
  • Schollenberger, M., Drochner, W., Rüfle, M., et al. 2005. Trichothecene toxins in different groups of conventional and organic bread of the German market. J. Food Comp. Anal. 18:69–78
  • Shaffer, A. L., Rosenwald, A., Hurt, E. M., et al. 2001. Signatures of the immune response. Immunity 15:375–385
  • Shi, Y., and Pestka, J. J. 2009. Mechanisms for suppression of IL-6 expression in peritoneal macrophages from docosahexaenoic acid-fed mice. J. Nutr. Biochem. 20:358–368
  • Soubra, L., Sarkis, D., Hilanc, C., and Vergera, P. 2009. Occurrence of total aflatoxins, Ochratoxin A, and deoxynivalenol in foodstuffs available in the Lebanese market and their impact on dietary exposure of children and teenagers in Beirut. Food Addit. Contam. 26:189–200
  • Sugita-Konishi, Y., Park, B. J., Kobayashi-Hattori, K., et al. 2006. Effect of cooking process on the deoxynivalenol content and its subsequent cytotoxicity in wheat products. Biosci. Biotechnol. Biochem. 70:1764–1768
  • Sun, Z., Zhang, S., Chan, J. Y., and Zhang, D. D. 2007. Keap1 controls post-induction repression of the Nrf2-mediated anti-oxidant response by escorting nuclear export of Nrf2. Mol. Cell. Biol. 27:6334–6349
  • van de Walle, J., Romier, B., Larondelle, Y., and Schneider, Y. J. 2008. Influence of deoxyniva-lenol on NF-κB activation and IL-8 secretion in human intestinal Caco-2 cells. Toxicol. Lett. 177:205–214
  • van Kol, S. W., Hendriksen, P. J., van Loveren, H., and Peijnenburg, A. 2011. The effects of deoxynivalenol on gene expression in the murine thymus. Toxicol. Appl. Pharmacol. 250:299–311
  • Wansa, K. D., Harris, J. M., and Muscat, G. E. 2002. The activation function-1 domain of Nur77/NR4A1 mediates trans-activation, cell specificity, and co-activator recruitment. J. Biol. Chem. 277:33001–33011
  • Yoshizawa, T. 1983. Red-mold diseases and natural occurrence in Japan. In: Ueno Y, ed. Trichothecenes: Chemical, Biological, and Toxicological Aspects. New York NY: Elsevier; 195–209
  • Zamorano, J., Mora, A. L., Boothby, M., and Keegan, A. D. 2001. NF-κB activation plays an important role in the IL-4-induced protection from apoptosis. Int. Immunol. 13:1479–1487
  • Zhou, H., and Pestka, J. J. 2003. Deoxynivalenol-induced apoptosis mediated by p38 MAPK-dependent p53 gene induction in raw 264.7 macrophages. Toxicol. Sci. 72:330–330
  • Zhou, H. R., Islam, Z., and Pestka, J. J. 2003a. Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicol. Sci. 72:130–142
  • Zhou, H. R., Islam, Z., and Pestka, J. J. 2005a. Induction of competing apoptotic and survival signaling pathways in the macrophage by the ribotoxic trichothecene deoxynivalenol. Toxicol. Sci. 87:113–122
  • Zhou, H. R., Jia, Q., and Pestka, J. J. 2005b. Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck. Toxicol. Sci. 85:916–926
  • Zhou, H. R., Lau, A. S., and Pestka, J. J. 2003b. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol. Sci. 74:335–344

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.