2,130
Views
37
CrossRef citations to date
0
Altmetric
Review Article

TGFβ: A player on multiple fronts in the tumor microenvironment

&
Pages 300-307 | Received 16 Jun 2014, Accepted 14 Jul 2014, Published online: 20 Aug 2014

References

  • Achyut, B. R., Bader, D. A., Robles, A. I., et al. 2013. Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGFβ signaling. PLoS Genet. 9:e1003251
  • Arsura, M., Wu, M., and Sonenshein, G. E. 1996. TGFβ1 inhibits NF-κB/Rel activity inducing apoptosis of B-cells: Transcriptional activation of IκBα. Immunity 5:31–40
  • Balkwill, F., and Mantovani, A. 2001. Inflammation and cancer: Back to Virchow? Lancet 357:539–545
  • Bandyopadhyay, B., Fan, J., Guan, R., et al. 2006. “Traffic control” role for TGFβ3: Orchestrating dermal and epidermal cell motility during wound healing. J. Cell. Biol. 172:1093–1105
  • Barcellos-Hoff, M. H., and Dix, T. A. 1996. Redox-mediated activation of latent TGFβ1. Mol. Endocrinol. 10:1077–1083
  • Bhola, N. E., Balko, J. M., Dugger, T. C., et al. 2013. TGFβ inhibition enhances chemotherapy action against triple-negative breast cancer. J. Clin. Invest. 123:1348–1358
  • Bhowmick, N. A., Chytil, A., Plieth, D., et al. 2004. TGFβ signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851
  • Bierie, B., and Moses, H. L. 2006. Tumor microenvironment: TGFβ - The molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 6:506–520
  • Bierie, B., Chung, C. H., Parker, J. S., et al. 2009. Abrogation of TGFβ signaling enhances chemokine production and correlates with prognosis in human breast cancer. J. Clin. Invest. 119:1571–1582
  • Biswas, S., Guix, M., Rinehart, C., et al. 2007. Inhibition of TGFβ with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J. Clin. Invest. 117:1305–1313
  • Bogdahn, U., Hau, P., Stockhammer, G., et al. 2011. Targeted therapy for high-grade glioma with the TGFβ2 inhibitor trabedersen: Results of a randomized and controlled Phase IIb study. Neuro Oncol. 13:132–142
  • Boyer, A. S., Ayerinskas, I. I., Vincent, E. B., et al. 1999. TGFβ2 and TGFβ3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev. Biol. 208:530–545
  • Bristow, R. G., and Hill, R. P. 2008. Hypoxia and metabolism: Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer 8:180–192
  • Burkholder, B., Huang, R. Y., Burgess, R., et al. 2014. Tumor-induced perturbations of cytokines and immune cell networks. Biochim. Biophys. Acta 1845:182–201
  • Calon, A., Espinet, E., Palomo-Ponce, S., et al. 2012. Dependency of colorectal cancer on a TGFβ-driven program in stromal cells for metastasis initiation. Cancer Cell 22:571–584
  • Carneiro, N. K., Oda, J. M., Losi Guembarovski, R., et al. 2013. Possible association between TGFβ1 polymorphism and oral cancer. Int. J. Immunogenet. 40:292–298
  • Chantry, D., Turner, M., Abney, E., and Feldmann, M. 1989. Modulation of cytokine production by TGFβ. J. Immunol. 142:4295–4300
  • Datto, M. B., Li, Y., Panus, J. F., et al. 1995. TGFβ induces the cyclin-dependent kinase inhibitor p21 through a p53- independent mechanism. Proc. Natl. Acad. Sci. USA. 92:5545–5549
  • Derynck, R., Jarrett, J. A., Chen, E. Y., et al. 1985. Human TGFβ complementary DNA sequence and expression in normal and transformed cells. Nature 316:701–705
  • Derynck, R., and Zhang, Y. E. 2003. Smad-dependent and Smad-independent pathways in TGFβ family signaling. Nature 425:577–584
  • Donatelli, S. S., Zhou, J. M., Gilvary, D. L., et al. (2014). TGFβ-inducible microRNA- 183 silences tumor-associated natural killer cells. Proc. Natl. Acad. Sci. USA 111:4203–4208
  • Dubois, C. M., Laprise, M. H., Blanchette, F., et al. 1995. Processing of TGFβ1 precursor by human furin convertase. J. Biol. Chem. 270:10618–10624
  • Dumont, N., Bakin, A. V., and Arteaga, C. L. 2003. Autocrine TGFβ signaling mediates Smad- independent motility in human cancer cells. J. Biol. Chem. 278:3275–3285
  • Ewen, M. E., Oliver, C. J., Sluss, H. K., et al. 1995. p53-dependent repression of CDK4 translation in TGFβ-induced G1 cell-cycle arrest. Genes Dev. 9:204–217
  • Finak, G., Bertos, N., Pepin, F., et al. 2008. Stromal gene expression predicts clinical outcome in breast cancer. Nature Med. 14:518–527
  • Flanders, K. C., Lüdecke, G., Engels, S., et al. 1991. Localization and actions of TGFβ in the embryonic nervous system. Development 113:183–191
  • Forrester, E., Chytil, A., Bierie, B., et al. 2005. Effect of conditional knockout of the Type II TGFβ receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen-induced tumor formation and metastasis. Cancer Res. 65:2296–2302
  • Fridlender, Z. G., Sun, J., Kim, S., et al. 2009. Polarization of tumor-associated neutrophil phenotype by TGFβ: “N1” versus “N2” TAN. Cancer Cell 16:183–194
  • Fukawa, T., Kajiya, H., Ozeki, S., et al. 2012. Reactive oxygen species stimulates epithelial mesenchymal transition in normal human epidermal keratinocytes via TGFβ secretion. Exp. Cell Res. 318:1926–1932
  • Fukuchi, M., Fukai, Y., Masuda, N., et al. 2002. High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res. 62:7162–7165
  • Gilbert, K. M., Thoman, M., Bauche, K., et al. 1997. TGFβ1 induces antigen-specific unresponsiveness in naive T-cells. Immunol. Invest. 26:459–472
  • Gong, D., Shi, W., Yi, S. J., et al. 2012. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 13:31
  • Gorelik, L., and Flavell, R. A. 2002. TGFβ in T-cell biology. Nat. Rev. Immunol. 2:46–53
  • Han, S. H., Yea, S. S., Jeon, Y. J., et al. 1998. TGFβ1 promotes IL-2 mRNA expression through the up-regulation of NF-κB, AP-1 and NF-AT in EL4 cells. J. Pharmacol. Exp. Ther. 287:1105–1112
  • Hanks, B. A., Holtzhausen, A., Evans, K. S., et al. 2013. Type III TGFβ receptor down-regulation generates an immunotolerant tumor microenvironment. J. Clin. Invest. 123:3925–3940
  • Hannon, G. J., and Beach, D. 1994. pl5INK4B is a potential effector of TGFβ-induced cell cycle arrest. Nature 371:257–261
  • Hawinkels, L. J., Paauwe, M., Verspaget, H. W., et al. 2014. Interaction with colon cancer cells hyperactivates TGFβ signaling in cancer-associated fibroblasts. Oncogene 33:97–107
  • Huang, S., Hölzel, M., Knijnenburg, T., et al. 2012. MED12 controls the response to multiple cancer drugs through regulation of TGFβ receptor signaling. Cell 151:937–950
  • Huber, M. A., Kraut, N., and Beug, H. 2005. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17:548–558
  • Hung, S. P., Yang, M. H., Tseng, K. F., and Lee, O. K. 2013. Hypoxia-induced secretion of TGFβ1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplant. 22:1869–1882
  • Iavarone, A., and Massague, J. 1999. E2F and histone deacetylase mediate TGFβ repression of cdc25A during keratinocyte cell cycle arrest. Mol. Cell Biol. 19:916–922
  • Inoue, Y., and Imamura, T. 2008. Regulation of TGFβ family signaling by E3 ubiquitin ligases. Cancer Sci. 99:2107–2112
  • Kaartinen, V., Voncken, J. W., Shuler, C., et al. 1995. Abnormal lung development and cleft palate in mice lacking TGFβ3 indicates defects of epithelial-mesenchymal interaction. Nat. Genet. 11:415–421
  • Kang, S. H., Bang, Y. J., Im, Y. H., et al. 1999. Transcriptional repression of the TGFβ type I receptor gene by DNA methylation results in the development of TGFβ resistance in human gastric cancer. Oncogene 18:7280–7286
  • Kim, B. G., Li, C., Qiao, W., et al. 2006. Smad4 signaling in T-cells is required for suppression of gastrointestinal cancer. Nature 441:1015–1019
  • Kim, S., Buchlis, G., Fridlender, Z. G., et al. 2008. Systemic blockade of TGFβ signaling augments the efficacy of immunogene therapy. Cancer Res. 68:10247–10256
  • Kim, S. J., Im, Y. H., Markowitz, S. D., and Bang, Y. J. 2000. Molecular mechanisms of inactivation of TGFβ receptors during carcinogenesis. Cytokine Growth Factor Rev. 11:159–168
  • Kitamura, T., Kometani, K., Hashida, H., et al. 2007. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat. Genet. 39:467–475
  • Kojima, S., and Rifkin, D. B. 1993. Mechanism of retinoid-induced activation of latent TGFβ in bovine endothelial cells. J. Cell Physiol. 155:323–332
  • Lawler, J., and Detmar, M. 2004. Tumor progression: The effects of thrombospondin-1 and -2. Int. J Biochem. Cell Biol. 36:1038–1045
  • Lebman, D. A., and Edmiston, J. S. 1999. The role of TGFβ in growth, differentiation, and maturation of B-lymphocytes. Microbes Infect. 1:1297–1304
  • Lee, J., Choi, J. H., and Joo, C. K. 2013. TGFβ1 regulates cell fate during epithelial-mesenchymal transition by up-regulating survivin. Cell Death Dis. 4:e714
  • Lee, M. S., Kim, T. Y., Kim, Y. B., et al. 2005. The signaling network of TGFβ1, protein kinase Cδ, and integrin underlies the spreading and invasiveness of gastric carcinoma cells. Mol. Cell Biol. 25:6921–6936
  • Li, G., Qin, L., Ye, Q., Dong, Q., et al. 2013. Organ microenvironment affects growth and metastasis of hepatocellular carcinoma via the TGFβ/Smad pathway in mice. Exp. Ther. Med. 5:133–137
  • Li, M. O., Wan, Y. Y., Sanjabi, S., et al. 2006. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24:99–146
  • Liu, Y., Lai, L., Chen, Q., et al. 2012. MicroRNA-494 is required for the accumulation and functions of tumor- expanded myeloid-derived suppressor cells via targeting of PTEN. J. Immunol. 188:5500–5510
  • Lu, T., Tian, L., Han, Y., et al. 2007. Dose-dependent crosstalk between the TGFβ and IL-1 signaling pathways. Proc. Natl. Acad. Sci. USA. 104:4365–4370
  • Lyons, R. M., Keski-Oja, J., and Moses, H. L. 1988. Proteolytic activation of latent TGFβ from fibroblast-conditioned medium. J. Cell Biol. 106:1659–1665
  • Mantovani, A., Schioppa, T., Porta, C., et al. 2006. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 25:315–322
  • Marcoe, J. P., Lim, J. R., Schaubert, K. L, et al. 2012. TGFβ is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy. Nat. Immunol. 13:843–850
  • Massague, J. 2012. TGFβ signaling in context. Nat. Rev. Mol. Cell. Biol. 13:616–630
  • Miettinen, P. J., Ebner, R., Lopez, A. R., and Derynck, R. 1994. TGFβ-induced trans-differentiation of mammary epithelial cells to mesenchymal cells: Involvement of Type I receptors. J. Cell. Biol. 127:2021–2036
  • Miller, D. A., Lee, A., Pelton R. W., et al. 1989. Murine transforming growth factor-beta 2 cDNA sequence and expression in adult tissues and embryos. Mol. Endocrinol. 3:1108–1114
  • Miyazono, K., Hellman, U., Wernstedt, C., and Heldin, C. H. 1988. Latent high molecular weight complex of TGFβ1. Purification from human platelets and structural characterization. J. Biol. Chem. 263:6407–6415
  • Munger, J. S., Huang, X., Kawakatsu, H., et al. 1999. The integrin alpha v beta 6 binds and activates latent TGFβ1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328
  • Myers, L. C., and Kornberg, R. D. 2000. Mediator of transcriptional regulation. Annu. Rev. Biochem. 69:729–749
  • Nakamura, K., Kitani, A., and Strober, W. 2001. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T-cells is mediated by cell surface-bound TGFβ. J. Exp. Med. 194:629–644
  • Nam, J. S., Terabe, M., Kang, M. J., et al. 2008. TGFβ subverts the immune system into directly promoting tumor growth through IL-17. Cancer Res. 68:3915–3923
  • Ota, M., Horiguchi, M., Fang, V., et al. 2014. Genetic suppression of inflammation blocks the tumor-promoting effects of TGF-β in gastric tissue. Cancer Res. 74:2642–2651
  • Oursler, M. J. 1994. Osteoclast synthesis and secretion and activation of latent TGFβ. J. Bone Miner. Res. 9:443–452
  • Padua, D., Zhang, X. H., Wang, Q., et al. 2008. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133:66–77
  • Pardali, K., and Moustakas, A. 2007. Actions of TGFβ as tumor suppressor and pro-metastatic factor in human cancer. Biochim. Biophys. Acta 1775:21–62
  • Peng, J., Tsang, J. Y., Li, D., et al. 2013. Inhibition of TGFβ signaling in combination with TLR7 ligation re- programs a tumoricidal phenotype in tumor-associated macrophages. Cancer Lett. 331:239–249
  • Piek, E., Heldin, C. H., and Ten Dijke, P. 1999. Specificity, diversity, and regulation in TGFβ superfamily signalling. FASEB J. 13:2105–2124
  • Polyak, K., Kato, J. Y., Solomon, M. J., et al. 1994. p27Kip1, a cyclin-Cdk inhibitor, links TGFβ and contact inhibition to cell cycle arrest. Genes Dev. 8:9–22
  • Proetzel, G., Pawlowski, S. A., Wiles, M. V., et al. 1995. TGFβ3 is required for secondary palate fusion. Nat. Genet. 11:409–414
  • Rifkin, D. B. 2005. Latent transforming growth factor (TGF)-β binding proteins: Orchestrators of TGFβ availability. J. Biol. Chem. 280:7409–7412
  • Safina, A., Vandette, E., and Bakin, A. V. 2007. ALK5 promotes tumor angiogenesis by up-regulating matrix metalloproteinase-9 in tumor cells. Oncogene 26:2407–2422
  • Sartor, M. A., Mahavisno, V., Keshamouni, V. G., et al. 2010. ConceptGen: A gene set enrichment and gene set relation mapping tool. Bioinformatics 26:456–463
  • Schlingensiepen, K. H., Jaschinski, F., Lang, S. A., et al. 2011. TGFβ2 gene silencing with trabedersen (AP 12009) in pancreatic cancer. Cancer Sci. 102:1193–1200
  • Schmierer, B., and Hill, C. S. 2005. Kinetic analysis of Smad nucleo-cytoplasmic shuttling reveals a mechanism for TGFβ-dependent nuclear accumulation of Smads. Mol. Cell Biol. 25:9845–9858
  • Schultz-Cherry, S., and Murphy-Ullrich, J. E. 1993. Thrombospondin causes activation of latent TGFβ secreted by endothelial cells by a novel mechanism. J. Cell Biol. 122:923–932
  • Schwyzer, M., and Fontana, A. 1985. Partial purification and biochemical characterization of a T-cell suppressor factor produced by human glioblastoma cells. J. Immunol. 134:1003–1009
  • Shevach, E. M. 2009. Mechanisms of FoxP3+ T-regulatory cell-mediated suppression. Immunity 30:636–645
  • Shi, Y., and Massague, J. 2003. Mechanisms of TGFβ signaling from cell membrane to the nucleus. Cell 113:685–700
  • Shukla, A., Edwards, R., Yang, Y., et al. 2013. CLIC4 regulates TGFβ-dependent myofibroblast differentiation to produce a cancer stroma. Oncogene 33:842–850
  • Sisirak, V., Vey, N., Goutagny, N., et al. 2013. Breast cancer-derived TGFβ and TNFα compromise IFNγ production by tumor-associated plasmacytoid dendritic cells. Int. J. Cancer 1:771–778
  • Stewart, A. A., Haley, J. D., Qu, G. Y., et al. 1996. Umbilical cord TGFβ3: Isolation, comparison with recombinant TGFβ3 and cellular localization. Growth Factors 13:87–98
  • Suh, K. S., Crutchley, J. M., Koochek, A., et al. 2007. Reciprocal modifications of CLIC4 in tumor epithelium and stroma mark malignant progression of multiple human cancers. Clin. Cancer Res. 13:121–131
  • Tanaka, H., Hinto, O., Yashiro, M., et al. 2010. TGFβ signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncol. Rep. 24:1637–1643
  • Thiery, J. P. 2002. Epithelial-mesenchymal transitions in tumor progression. Nat. Rev. Cancer 2:442–454
  • Thiery, J. P., Acloque, H., Huang, R. Y., and Nieto, M. A. 2009. Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890
  • Thomas, D. A., and Massague, J. 2005. TGFβ directly targets cytotoxic T-cell functions during tumor evasion of immune surveillance. Cancer Cell 8:369–380
  • Tsunawaki, S., Sporn, M., Ding, A., and Nathan, C. 1988. Deactivation of macrophages by TGFβ. Nature 334:260–262
  • Turner, M., Chantry, D., and Feldmann, M. 1990. TGFβ induces production of IL-6 by human peripheral blood mononuclear cells. Cytokine 2:211–216
  • Wang, J., Wang, Y., Ma, Y., et al. 2013. TGFβ-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium. J. Biol. Chem. 288:10418–10426
  • Weaver, C. T., Harrington, L. E., Mangan, P. R., et al. 2006. TH17: An effector CD4 T-cell lineage with regulatory T-cell ties. Immunity 24:677–688
  • Wipff, P. J., and Hinz, B. 2008. Integrins and the activation of latent TGFβ1 - an intimate relationship. Eur. J. Cell Biol. 87:601–615
  • Wipff, P. J., Rifkin, D. B., Meister, J. J., and Hinz, B. 2007. Myofibroblast contraction activates latent TGFβ1 from the extracellular matrix. J. Cell Biol. 179:1311–1323
  • Wiseman, D. M., Polverini, P. J., Kamp, D. W., and Leibovich, S. J. 1988. Transforming growth factor (TGF)-β is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem. Biophys. Res. Commun. 157:793–800
  • Xu, C., Yu, P., Han, X., et al. 2014a. TGFβ promotes immune responses in the presence of mesenchymal stem cells. J. Immunol. 192:103–109
  • Xu, Z., Wang, Y., Zhang, L., and Huang, L. 2014b. Nanoparticle-delivered TGFβ siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8:3636–3645
  • Yang, L., and Moses, H. L. 2008. TGFβ: Tumor suppressor or promoter? Are host immune cells the answer? Cancer Res. 68:9107–9111
  • Yang, L., Pang, Y., and Moses, H. L. 2010. TGFβ and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 31:220–227
  • Yang, P., Li, Q. J., Feng, Y., et al. 2012. TGFβ-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV+ hepatocellular carcinoma. Cancer Cell 22:291–303
  • Yu, Q., and Stamenkovic, I. 2000. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGFβ and promotes tumor invasion and angiogenesis. Genes Dev. 14:163–176
  • Zarzynska, J. M. 2014. Two faces of TGF-β1 in breast cancer. Mediators Inflamm. 2014:141747
  • Zeisberg, M., and Neilson, E. G. 2009. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119:1429–1437
  • Zhong, Z., Carroll, K. D., Policarpio, D., et al. 2010. Anti-TGFβ receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multi-effects on cancer, stroma, and immune cells. Clin. Cancer Res. 16:1191–1205

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.