5,116
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Application of nanomedicine for crossing the blood–brain barrier: Theranostic opportunities in multiple sclerosis

, , , , , & show all
Pages 603-619 | Received 01 Dec 2015, Accepted 24 Feb 2016, Published online: 14 Jul 2016

References

  • Agarwal A, Agrawal H, Tiwari S, Jain S, Agrawal GP. 2011. Cationic ligand appended nanoconstructs: A prospective strategy for brain targeting. Int JPharm. 421:189–201.
  • Allen T, Hansen C, Guo L. 1993. Subcutaneous administration of liposomes: A comparison with the intravenous and intraperitoneal routes of injection. Biochim Biophys Acta Biomemb. 1150:9–16.
  • Arseneault M, Wafer C, MORIN J-F. 2015. Recent advances in click chemistry applied to dendrimer synthesis. Molecules. 20:9263–9294.
  • Bahbouhi B, Pettré S, Berthelot L, Garcia A, Ngono AE, Degauque N, Michel L, Wiertlewski S, Lefrère F, Meyniel C. 2010. T-cell recognition of self-antigen presenting cells by protein transfer assay reveals a high frequency of anti-myelin T-cells in multiple sclerosis. Brain. 133:1622–1636.
  • Bahrami B, Mohammadnia-Afrouzi M, Bakhshaei P, Yazdani Y, Ghalamfarsa G, Yousefi M, Sadreddini S, Jadidi-Niaragh F, Hojjat-Farsangi M. 2015. Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumor Biol. 36:5727–5742.
  • Bangham A, Standish MM, Watkins J. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 13:238–252.
  • Barenholz YC. 2012. Doxil®—the first FDA-approved nano-drug: Lessons learned. J Control Release. 160:117–134.
  • Basso AS, Frenkel D, Quintana FJ, Costa-Pinto FA, Petrovic-Stojkovic S, Puckett L, Monsonego A, Bar-Shir A, Engel Y, Gozin M, et al. 2008. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J Clin Invest. 118:1532.
  • Bataveljić D, Stamenković S, Bačić G, Andjus PR. 2011. Imaging cellular markers of neuroinflammation in the brain of the rat model of amyotrophic lateral sclerosis. Acta Physiol Hungarica. 98:27–31.
  • Batrakova EV, Han H-Y, Miller DW, Kabanov AV. 1998. Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm Res. 15:1525–1532.
  • Batrakova EV, Kabanov AV. 2008. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 130:98–106.
  • Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A. 2013. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 65:1899–1920.
  • Béduneau A, Hindré F, Clavreul A, Leroux J-C, Saulnier P, Benoit J-P. 2008. Brain targeting using novel lipid nanovectors. J Control Release. 126:44–49.
  • Béduneau A, Saulnier P, Hindré F, Clavreul A, Leroux J-C, Benoit J-P. 2007. Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’fragments. Biomaterials. 28:4978–4990.
  • Beg S, Samad AI, Alam M, Nazish I. 2011. Dendrimers as novel systems for delivery of neuropharmaceuticals to the brain. CNS Neurol Disord Drug Targets. 10:576–588.
  • Bencherif SA, Siegwart DJ, Srinivasan A, Horkay F, Hollinger JO, Washburn NR, Matyjaszewski K. 2009. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials. 30:5270–5278.
  • Bertero A, Boni A, Gemmi M, Gagliardi M, Bifone A, Bardi G. 2014. Surface functionalisation regulates polyamidoamine dendrimer toxicity on blood–brain barrier cells and the modulation of key inflammatory receptors on microglia. Nanotoxicology. 8:158–168.
  • Bozzuto G, Molinari A. 2015. Liposomes as nanomedical devices. Int J Nanomed 10:975–981.
  • Caporro M, Disanto G, Gobbi C, Zecca C. 2014. Two decades of subcutaneous glatiramer acetate injection: Current role of the standard dose, and new high-dose low-frequency glatiramer acetate in relapsing–remitting multiple sclerosis treatment. Patient Prefer Adherence. 8:1123–1134.
  • Cappellano G, Woldetsadik AD, Orilieri E, Shivakumar Y, Rizzi M, Carniato F, Gigliotti CL, Boggio E, Clemente N, Comi C. 2014. Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis. Vaccine. 32:5681–5689.
  • Cavaletti G, Cassetti A, Canta A, Galbiati S, Gilardini A, Oggioni N, Rodriguez-Menendez V, Fasano A, Liuzzi GM, Fattler U, et al. 2009. Cationic liposomes target sites of acute neuroinflammation in experimental autoimmune encephalomyelitis. Mol Pharmaceut. 6:1363–1370.
  • Chattopadhyay N, Zastre J, Wong H-L, Wu XY, Bendayan R. 2008. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res. 25:2262–2271.
  • Chau NDQ, Ménard-Moyon C, Kostarelos K, Bianco A. 2015. Multifunctional carbon nanomaterial hybrids for magnetic manipulation and targeting. Biochem Biophys Res Commun. 468:454–462.
  • Chen D-B, Yang T-Z, Lu W-L, Zhang Q. 2001. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull. 49:1444–1447.
  • Cheng M-R, Li Q, Wan T, He B, Han J, Chen H-X, Yang F-X, Wang W, Xu H-Z, Ye T. 2012. Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects. World J Gastroenterol. 18:6076.
  • Chowdhary RK, Chansarkar N, Sharif I, Hioka N, Dolphin D. 2003. Formulation of benzoporphyrin derivatives in pluronics. Photochem Photobiol. 77:299–303.
  • Christenson RH, Cervelli DR, Bauer RS, Gordon M. 2004. Stratus® CS cardiac troponin I method: Performance characteristics including imprecision at low concentrations. Clin Biochem. 37:679–683.
  • Claire du Toit L, Pillay V, Choonara YE, Pillay S, Harilall S-L. 2007. Patenting of nanopharmaceuticals in drug delivery: No small issue. Recent Patents Drug Deliv Formulation. 1:131–142.
  • Cuzner ML, Gveric D, Strand C, Loughlin AJ, Paemen L, Opdenakker G, Newcombe J. 1996. The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: Comparison of stages in lesion evolution. J Neuropathol Exp Neurol. 55:1194–1204.
  • Dai H, Navath RS, Balakrishnan B, Guru BR, Mishra MK, Romero R, Kannan RM, Kannan S. 2010. Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine. 5:1317–1329.
  • Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, Préat V. 2009. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J Control Release. 133:11–17.
  • Dash PR, Read ML, Fisher KD, Howard KA, Wolfert M, Oupicky D, Subr V, Strohalm J, Ulbrich K, Seymour LW. 2000. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin. J Biol Chem. 275:3793–3802.
  • De Jesus MB, Zuhorn IS. 2015. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J Control Release. 201:1–13.
  • Dellinger A, Zhou Z, Connor J, Madhankumar A, Pamujula S, Sayes CM, Kepley CL. 2013. Application of fullerenes in nanomedicine: An update. Nanomedicine. 8:1191–1208.
  • Demeule M, Currie JC, Bertrand Y, Ché C, Nguyen T, Régina A, Gabathuler R, Castaigne JP, Béliveau R. 2008. Involvement of the low‐density lipoprotein receptor‐related protein in the transcytosis of the brain delivery vector Angiopep‐2. J Neurochem. 106:1534–1544.
  • Dhanikula RS, Argaw A, Bouchard J-F, Hildgen P. 2008. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: Enhanced efficacy and intratumoral transport capability. Mol Pharm. 5:105–116.
  • Dhawan S, Kapil R, Singh B. 2011. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol. 63:342–351.
  • Donaghue IE, Tam R, Sefton MV, Shoichet MS. 2014. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. J Control Release. 190:219–227.
  • Dunne M, Corrigan O, Ramtoola Z. 2000. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials. 21:1659–1668.
  • Eaton VL, Vasquez KO, Goings GE, Hunter ZN, Peterson JD, Miller SD. 2013. Optical tomographic imaging of near infrared imaging agents quantifies disease severity and immunomodulation of experimental autoimmune encephalomyelitis in vivo. J Neuroinflammation. 10:138.
  • Eitan E, Hutchison ER, Greig NH, Tweedie D, Celik H, Ghosh S, Fishbein KW, Spencer RG, Sasaki CY, Ghosh P. 2015. Combination therapy with lenalidomide and nanoceria ameliorates CNS autoimmunity. Exp Neurol. 273:151–160.
  • Elamanchili P, Lutsiak CM, Hamdy S, Diwan M, Samuel J. 2007. “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J Immunother. 30:378–395.
  • Esfand R, Tomalia DA. 2001. Poly (amidoamine)(PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discov Today. 6:427–436.
  • Foley CP, Nishimura N, Neeves KB, Schaffer CB, Olbricht WL. 2012. Real-time imaging of perivascular transport of nanoparticles during convection-enhanced delivery in the rat cortex. Ann Biomed Eng. 40:292–303.
  • Freitas C, Müller RH. 1998. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm. 168:221–229.
  • Freitas RA. 2005. Nanotechnology, nanomedicine and nanosurgery. Int J Surg. 3:243–246.
  • Führmann T, Ghosh M, Otero A, Goss B, Pearse DD, Dalton PD. 2015. Peptide-functionalized polymeric nanoparticles for active targeting of damaged tissue in animals with experimental autoimmune encephalomyelitis. Neurosci Lett. 602:126–132.
  • Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR. 2000. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: Pharmacokinetics and tissue distribution after iv administration to rats. Pharmacol Res. 42:337–343.
  • Gammon JM, Tostanoski LH, Adapa AR, Chiu Y-C, Jewell CM. 2015. Controlled delivery of a metabolic modulator promotes regulatory T cells and restrains autoimmunity. J Control Release. 210:169–178.
  • Ganta S, Deshpande D, Korde A, Amiji M. 2010. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol. 27:260–273.
  • Ganta S, Paxton JW, Baguley BC, Garg S. 2008. Pharmacokinetics and pharmacodynamics of chlorambucil delivered in parenteral emulsion. Int J Pharm. 360:115–121.
  • Ganta S, Singh A, Kulkarni P, Keeler AW, Piroyan A, Sawant RR, Patel NR, Davis B, Ferris C, O’Neal S. 2015. EGFR targeted theranostic nanoemulsion for image-guided ovarian cancer therapy. Pharm Res 32:2753–2763.
  • Gao H, Pang Z, Jiang X. 2013. Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm Res 30:2485–2498.
  • Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, Rong Z, Chen H, Jiang X. 2007. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release. 121:156–167.
  • Georganopoulou DG, Chang L, Nam J-M, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA. 2005. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc Natl Acad Sci USA. 102:2273–2276.
  • Ghabaee M, Jabedari B, Al-E-Eshagh N, Ghaffarpour M, Asadi F. 2010. Serum and cerebrospinal fluid antioxidant activity and lipid peroxidation in Guillain-Barre syndrome and multiple sclerosis patients. Int J Neurosci. 120:301–304.
  • Ghalamfarsa G, Mahmoudi M, Mohammadnia-Afrouzi M, Yazdani Y, Anvari E, Hadinia A, Ghanbari A, Setayesh M, Yousefi M, Jadidi-Niaragh F. 2015. IL-21 and IL-21 receptor in the immunopathogenesis of multiple sclerosis. J Immunotoxicol. [Epub ahead of print].
  • Gharibi T, Ahmadi M, Seyfizadeh N, Jadidi-Niaragh F, Yousefi M. 2015. Immunomodulatory characteristics of mesenchymal stem cells and their role in the treatment of multiple sclerosis. Cell Immunol. 293:113–121.
  • Ginocchio CC. 2011. Strengths and weaknesses of FDA-approved/cleared diagnostic devices for the molecular detection of respiratory pathogens. Clin Infect Dis. 52:S312–S325.
  • Gonzalo H, Brieva L, Tatzber F, Jové M, Cacabelos D, Cassanyé A, Lanau‐Angulo L, Boada J, Serrano JC, González C. 2012. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J Neurochem. 123:622–634.
  • Gosselin MA, Lee RJ. 2002. Folate receptor-targeted liposomes as vectors for therapeutic agents. Biotechnol Annu Rev. 8:103–131.
  • Graf A, Rades T, Hook SM. 2009. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: Optimization and in vivo evaluation. Eur J Pharm Sci. 37:53–61.
  • Gupta Y, Jain A, Jain SK. 2007. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol. 59:935–940.
  • Haes AJ, Chang L, Klein WL, van Duyne RP. 2005. Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 127:2264–2271.
  • Hawker CJ, Frechet JM. 1990. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc. 112:7638–7647.
  • Heckman KL, Decoteau W, Estevez A, Reed KJ, Costanzo W, Sanford D, Leiter JC, Clauss J, Knapp K, Gomez C. 2013. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano. 7:10582–10596.
  • Hemmer R, Hall A, Spaulding R, Rossow B, Hester M, Caroway M, Haskamp A, Wall S, Bullen HA, Morris C. 2013. Analysis of biotinylated generation 4 poly (amidoamine)(PAMAM) dendrimer distribution in the rat brain and toxicity in a cellular model of the blood-brain barrier. Molecules. 18:11537–11552.
  • Hoepner R, Faissner S, Salmen A, Gold R, Chan A. 2014. Efficacy and side effects of natalizumab therapy in patients with multiple sclerosis. J Central Nerv Syst Dis. 6:41–49.
  • Høglund RA, Maghazachi AA. 2014. Multiple sclerosis and the role of immune cells. World J Exp Med. 4:27–37.
  • Hosseini A, Sharifi AM, Abdollahi M, Najafi R, Baeeri M, Rayegan S, Cheshmehnour J, Hassani S, Bayrami Z, Safa M. 2014. Cerium and yttrium oxide nanoparticles against lead-induced oxidative stress and apoptosis in rat hippocampus. Biol Trace Element Res. 164:80–89.
  • Hosseini M, Haji-Fatahaliha M, Jadidi-Niaragh F, Majidi J, Yousefi M. 2015. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artif Cells Nanomed Biotechnol. [Epub ahead of print].
  • Hsiao JK, Chu HH, Wang YH, Lai CW, Chou PT, Hsieh ST, Wang JL, Liu HM. 2008. Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed. 21:820–829.
  • Hu W, Metselaar J, Ben L-H, Cravens PD, Singh MP, Frohman EM, Eagar TN, Racke MK, Kieseier BC, Stüve O. 2009. PEG minocycline-liposomes ameliorate CNS autoimmune disease. PLoS One. 4:e4151.
  • Huang R, Ke W, Liu Y, Jiang C, Pei Y. 2008. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials. 29:238–246.
  • Hunger M, Budinger E, Zhong K, Angenstein F. 2014. Visualization of acute focal lesions in rats with experimental autoimmune encephalomyelitis by magnetic nanoparticles, comparing different MRI sequences including phase imaging. J Magn Resonance Imaging. 39:1126–1135.
  • Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD, Miller SD. 2014. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano. 8:2148–2160.
  • Hwang SR, Kim K. 2014. Nano-enabled delivery systems across the blood–brain barrier. Arch Pharm Res. 37:24–30.
  • Illum L. 2004. Is nose‐to‐brain transport of drugs in man a reality? J Pharm Pharmacol. 56:3–17.
  • Jackson AL, Linsley PS. 2010. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov. 9:57–67.
  • Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, Fischer JS, Goodkin DE, Granger CV, Simon JH. 1996. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol. 39:285–294.
  • Jadidi-Niaragh F, Atyabi F, Rastegari A, Mollarazi E, Kiani M, Razavi A, Yousefi M, Kheshtchin N, Hassannia H, Hadjati J. 2016. Down-regulation of CD73 in 4T1 breast cancer cells through siRNA-loaded chitosan-lactate nanoparticles. Tumor Biol. [Epub ahead of print].
  • Jadidi-Niaragh F, Mirshafiey A. 2010. Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology. 59:180–189.
  • Jadidi-Niaragh F, Mirshafiey A. 2011a. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol Immunotoxicol. 33:545–567.
  • Jadidi-Niaragh F, Mirshafiey A. 2011b. TH17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 74:1–13.
  • Jadidi-Niaragh F, Mirshafiey A. 2011c. Therapeutic approach to multiple sclerosis by novel oral drugs. Recent Patents Inflamm Allergy Drug Discov. 5:66–80.
  • Jadidi-Niaragh F, Mirshafiey A. 2012. The deviated balance between regulatory T-cell and TH17 in autoimmunity. Immunopharmacol Immunotoxicol. 34:727–739.
  • Jang JS, Kim SY, Lee SB, Kim KO, Han JS, Lee YM. 2006. Poly (ethylene glycol)/poly (ɛ-caprolactone) diblock copolymeric nanoparticles for non-viral gene delivery: The role of charge group and molecular weight in particle formation, cytotoxicity and transfection. J Control Release. 113:173–182.
  • Javaheri-Kermani M, Farazmandfar T, Ajami A, Yazdani Y. 2014. Impact of hepcidin antimicrobial peptide on iron overload in tuberculosis patients. Scand J Infect Dis. 46:693–696.
  • Jeffries GD, Edgar JS, Zhao Y, Shelby JP, Fong C, Chiu DT. 2007. Using polarization-shaped optical vortex traps for single-cell nanosurgery. Nano Lett. 7:415–420.
  • Jenkins SI, Pickard MR, Granger N, Chari DM. 2011. Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies. ACS Nano. 5:6527–6538.
  • Kabanov AV, Batrakova EV, Miller DW. 2003. Pluronic® block copolymers as modulators of drug efflux transporter activity in the blood–brain barrier. Adv Drug Deliv Rev. 55:151–164.
  • Kanazawa T. 2015. Brain delivery of small interfering ribonucleic acid and drugs through intranasal administration with nano-sized polymer micelles. Med Devices (Auckland, NZ). 8:57–64.
  • Kanazawa T, Taki H, Tanaka K, Takashima Y, Okada, H. 2011. Cell-penetrating peptide-modified block copolymer micelles promote direct brain delivery via intranasal administration. Pharm Res. 28:2130–2139.
  • Kannan S, Dai H, Navath RS, Balakrishnan B, Jyoti A, Janisse J, Romero R, Kannan RM. 2012. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci Transl Med. 4:130ra46.
  • Kanwar JR, Sun X, Punj V, Sriramoju B, Mohan RR, Zhou S-F, Chauhan A, Kanwar RK. 2012. Nanoparticles in the treatment and diagnosis of neurological disorders: Untamed dragon with fire power to heal. Nanomed Nanotechnol Biol Med. 8:399–414.
  • Karmakar A, Xu Y, Mahmood MW, Zhang Y, Saeed LM, Mustafa T, Ali S, Biris AR, Biris AS. 2011. Radio-frequency induced in vitro thermal ablation of cancer cells by EGF functionalized carbon-coated magnetic nanoparticles. J Mater Chem. 21:12761–12769.
  • Kasper LH, Reder AT. 2014. Immunomodulatory activity of interferon‐beta. Ann Clin Transl Neurol. 1:622–631.
  • Kaur IP, Bhandari R, Bhandari S, Kakkar V. 2008. Potential of solid lipid nanoparticles in brain targeting. J Control Release. 127:97–109.
  • Ke W, Shao K, Huang R, Han L, Liu Y, Li J, Kuang Y, Ye L, Lou J, Jiang C. 2009a. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials. 30:6976–6985.
  • Ke Y-Q, Hu C-C, Jiang X-D, Yang Z-J, Zhang H-W, Ji H-M, Zhou L-Y, Cai Y-Q, Qin L-S, Xu R-X. 2009b. In vivo magnetic resonance tracking of Feridex-labeled bone marrow-derived neural stem cells after autologous transplantation in rhesus monkey. J Neurosci Methods. 179:45–50.
  • Keliher EJ, Yoo J, Nahrendorf M, Lewis JS, Marinelli B, Newton A, Pittet MJ, Weissleder R. 2011. 89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging. Bioconjug Chem. 22:2383–2389.
  • Kempiński W, Łoś S, Kempiński M, Markowski D. 2014. Experimental techniques for the characterization of carbon nanoparticles–a brief overview. Beilstein J Nanotechnol. 5:1760–1766.
  • Kesharwani P, Tekade RK, Jain NK. 2014a. Formulation development and in vitro-in vivo assessment of the fourth-generation PPI dendrimer as a cancer-targeting vector. Nanomedicine. 9:2291–2308.
  • Kesharwani P, Tekade RK, Jain NK. 2014b. Generation dependent cancer targeting potential of poly (propyleneimine) dendrimer. Biomaterials. 35:5539–5548.
  • Khawaja AM. 2011. The legacy of nanotechnology: Revolution and prospects in neurosurgery. Int J Surg. 9:608–614.
  • Kim D-H, Martin DC. 2006. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials. 27:3031–3037.
  • Kim W, Zandoná ME, Kim S-H, Kim HJ. 2015. Oral disease-modifying therapies for multiple sclerosis. J Clin Neurol. 11:9–19.
  • Kircheis R, Blessing T, Brunner S, Wightman L, Wagner E. 2001. Tumor targeting with surface-shielded ligand–polycation DNA complexes. J Control Release. 72:165–170.
  • Kizelsztein P, Ovadia H, Garbuzenko O, Sigal A, Barenholz Y. 2009. Pegylated nanoliposomes remote-loaded with the anti-oxidant tempamine ameliorate experimental autoimmune encephalomyelitis. J Neuroimmunol. 213:20–25.
  • Kobayashi H, Jo S-K, Kawamoto S, Yasuda H, Hu X, Knopp MV, Brechbiel MW, Choyke PL, Star RA. 2004. Polyamine dendrimer-based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. J Magn Resonan Imaging. 20:512–518.
  • Kokhaei P, Jadidi-Niaragh F, Sotoodeh Jahromi A, Osterborg A, Mellstedt H, Hojjat-Farsangi M. 2015. Ibrutinib-A double-edge sword in cancer and autoimmune disorders. J Drug Target. [Epub ahead of print].
  • Koshkaryev A, Piroyan A, Torchilin VP. 2012. Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Cancer Biol Ther. 13:50–60.
  • Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S. 2012. Nanocapsules: The weapons for novel drug delivery systems. BioImpacts. 2:71–81.
  • Krishnamachari Y, Geary SM, Lemke CD, Salem AK. 2011. Nanoparticle delivery systems in cancer vaccines. Pharm Res. 28:215–236.
  • Kumar M, Misra A, Mishra A, Mishra P, Pathak K. 2008. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J Drug Target 16:806–814.
  • Kuo Y-C, Chen H-H. 2006. Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate–sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier. Int J Pharm. 327:160–169.
  • Lamprecht C, Hinterdorfer P, Ebner A. 2014. Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert Opin Drug Deliv. 11:1237–1253.
  • Landau AJ, Eberhardt RT, Frishman WH. 1994. Intranasal delivery of cardiovascular agents: An innovative approach to cardiovascular pharmacotherapy. Am Heart J. 127:1594–1599.
  • Leamon CP, Low PS. 2001. Folate-mediated targeting: From diagnostics to drug and gene delivery. Drug Discov Today. 6:44–51.
  • Lee J-H, Seo HS, Song JA, Kwon KC, Lee EJ, Kim HJ, Lee EB, Cha YJ, Lee J. 2013. Proteinticle engineering for accurate 3D diagnosis. ACS Nano. 7:10879–10886.
  • Lee J, Nikolov A, Wasan D. 2014. Surfactant micelles containing solubilized oil decrease foam film thickness stability. J Colloid Interface Sci. 415:18–25.
  • Letchford K, Burt H. 2007. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 65:259–269.
  • Li W, Minohara M, Su JJ, Matsuoka T, Osoegawa M, Ishizu T, Kira J-I. 2007. Helicobacter pylori infection is a potential protective factor against conventional multiple sclerosis in the Japanese population. J Neuroimmunol. 184:227–231.
  • Libbey JE, Cusick MF, Fujinami RS. 2014. Role of pathogens in multiple sclerosis. Int Rev Immunol. 33:266–283.
  • Linker RA, Weller C, Lühder F, Mohr A, Schmidt J, Knauth M, Metselaar JM, Gold R. 2008. Liposomal glucocorticosteroids in treatment of chronic autoimmune demyelination: Long-term protective effects and enhanced efficacy of methylprednisolone formulations. Exp Neurol. 211:397–406.
  • Liu H, Wang H, Yang W, Cheng Y. 2012. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J Am Chem Soc. 134:17680–17687.
  • Liu Y, Li J, Shao K, Huang R, Ye L, Lou J, Jiang C. 2010. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials. 31:5246–5257.
  • Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD. 2003. Brain uptake of thiamine-coated nanoparticles. J Control Release. 93:271–282.
  • Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian X-Q. 2014. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine. 9:2241–2257.
  • Lutsenko S, Feldman N, Severin S. 2002. Cytotoxic and anti-tumor activities of doxorubicin conjugates with the epidermal growth factor and its receptor-binding fragment. J Drug Target. 10:567–571.
  • Machtoub L, Pfeiffer R, Backovic A, Frischauf S, Wick MC. 2010. Molecular imaging cellular SPIO uptake with nonlinear optical microscopy. J Med Imaging Radiat Sci. 41:159–164.
  • Madaan K, Kumar S, Poonia N, Lather V, Pandita D. 2014. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharmacy Bioallied Sci. 6:139–150.
  • Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S. 2011. Superparamagnetic iron oxide nanoparticles: Promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci. 2:118–140.
  • Makadia HK, Siegel SJ. 2011. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 3:1377–1397.
  • Marcato PD, Durán N. 2008. New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol. 8:2216–2229.
  • Maruyama K, Takahashi N, Tagawa T, Nagaike K, Iwatsuru M. 1997. Immunoliposomes bearing polyethyleneglycol-coupled Fab′ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett. 413:177–180.
  • Menjoge AR, Kannan RM, Tomalia DA. 2010. Dendrimer-based drug and imaging conjugates: Design considerations for nanomedical applications. Drug Discov Today. 15:171–185.
  • Merodio M, Irache JM, Eclancher F, Mirshahi M, Villarroya H. 2000. Distribution of albumin nanoparticles in animals induced with the experimental allergic encephalomyelitis. J Drug Target. 8:289–303.
  • Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M, Kreuter J, Langer K. 2006. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther. 317:1246–1253.
  • Miljković D, Spasojević I. 2013. Multiple sclerosis: Molecular mechanisms and therapeutic opportunities. Antioxidants Redox Signal. 19:2286–2334.
  • Mirshafiey A, Asghari B, Ghalamfarsa G, Jadidi-Niaragh F, Azizi G. 2014. The significance of matrix metalloproteinases in the immunopathogenesis and treatment of multiple sclerosis. Sultan Qaboos Univ Med J. 14:e13.
  • Mirshafiey A, Jadidi-Niaragh F. 2010a. Immunopharmacological role of the leukotriene receptor antagonists and inhibitors of leukotrienes generating enzymes in multiple sclerosis. Immunopharmacol Immunotoxicol. 32:219–227.
  • Mirshafiey A, Jadidi-Niaragh F. 2010b. Prostaglandins in pathogenesis and treatment of multiple sclerosis. Immunopharmacol Immunotoxicol. 32:543–554.
  • Monaco AM, Giugliano M. 2014. Carbon-based smart nanomaterials in biomedicine and neuroengineering. Beilstein J Nanotechnol. 5:1849–1863.
  • Muller RH, Mader K, Gohla S. 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery – A review of the state of the art. Eur J Pharm Biopharm. 50:161–177.
  • Nance EA, Woodworth GF, Sailor KA, Shih T-Y, Xu Q, Swaminathan G, Xiang D, Eberhart C, Hanes J. 2012. A dense poly-(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med. 4:149ra119.
  • Nayak S, Lee H, Chmielewski J, Lyon LA. 2004. Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc. 126:10258–10259.
  • Neely A, Perry C, Varisli B, Singh AK, Arbneshi T, Senapati D, Kalluri JR, Ray PC. 2009. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano. 3:2834–2840.
  • Neuwelt A, Sidhu N, Hu C-AA, Mlady G, Eberhardt SC, Sillerud LO. 2015. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. Am J Roentgenol. 204:W302.
  • Niu R, Zhao P, Wang H, Yu M, Cao S, Zhang F, Chang J. 2011. Preparation, characterization, and anti-tumor activity of paclitaxel-loaded folic acid modified and TAT peptide conjugated PEGylated polymeric liposomes. J Drug Target. 19:373–381.
  • Niven RW, Speer M, Schreier H. 1991. Nebulization of liposomes. II. The effects of size and modeling of solute release profiles. Pharm Res. 8:217–221.
  • Obataya I, Nakamura C, Han S, Nakamura N, Miyake J. 2005. Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett. 5:27–30.
  • Ogris M, Brunner S, Schüller S, Kircheis R, Wagner E. 1999. PEGylated DNA/transferrin-PEI complexes: Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6:595–605.
  • Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V, Macias-Islas MA, Torres-Sánchez ED. 2013. Immunology and oxidative stress in multiple sclerosis: Clinical and basic approach. Clin Dev Immunol. 2013.
  • Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, Hernández-Navarro VE, Sánchez-López AL, Alatorre-Jiménez MA. 2014. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 45:687–697.
  • Oupicky D, Ogris M, Howard KA, Dash PR, Ulbrich K, Seymour LW. 2002. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Mol Ther. 5:463–472.
  • Oyewumi MO, Liu S, Moscow JA, Mumper RJ. 2003. Specific association of thiamine-coated gadolinium nanoparticles with human breast cancer cells expressing thiamine transporters. Bioconj Chem. 14:404–411.
  • Paiphansiri U, Tangboriboonrat P, Landfester K. 2007. Antiseptic nanocapsule formation via controlling polymer deposition onto water‐in‐oil miniemulsion droplets. Macromol Biosci. 6:33–40.
  • Pardridge WM, Kang Y-S, Buciak JL, Yang, J. 1995. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood–brain barrier in vivo in the primate. Pharm Res. 12:807–816.
  • Pardridge WM, Wu D, Sakane T. 1998. Combined use of carboxyl-directed protein pegylation and vector-mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharm Res. 15:576–582.
  • Parveen S, Sahoo SK. 2008. Polymeric nanoparticles for cancer therapy. J Drug Target. 16:108–123.
  • Patlolla RR, Vobalaboina V. 2008. Folate-targeted etoposide-encapsulated lipid nanospheres. J Drug Target. 16:269–275.
  • Patton D, Sweeney YC, Mccarthy T, Hillier S. 2006. Preclinical safety and efficacy assessments of dendrimer-based (SPL7013) microbicide gel formulations in a non-human primate model. Antimicrob Agents Chemother. 50:1696–1700.
  • Pezeshki MZ, Zarrintan S, Zarrintan MH. 2008. Helicobacter pylori nanoparticles as a potential treatment of conventional multiple sclerosis. Med Hypotheses. 70:1223.
  • Ponomarev ED, Shriver LP, Maresz K, Dittel BN. 2005. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res. 81:374–389.
  • Popescu BFG, Lucchinetti CF. 2012. Pathology of demyelinating diseases. Annu Rev Pathol Mech Dis. 7:185–217.
  • Prabhu RH, Patravale VB, Joshi MD. 2015. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int J Nanomedicine. 10:1001.
  • Rajagopalan R, Xavier J, Rangaraj N, Rao NM, Gopal V. 2007a. Recombinant fusion proteins TAT-Mu, Mu and Mu-Mu mediate efficient non-viral gene delivery. J Gene Med. 9:275–286.
  • Rajagopalan R, Xavier J, Rangaraj N, Rao NM, Gopal V. 2007b. Recombinant fusion proteins TAT‐Mu, Mu and Mu‐Mu mediate efficient non‐viral gene delivery. J Gene Med. 9:275–286.
  • Ransohoff RM, Engelhardt B. 2012. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 12:623–635.
  • Ransohoff RM, Hafler DA, Lucchinetti CF. 2015. Multiple sclerosis — A quiet revolution. Nat Rev Neurol. 11:134–142.
  • Reddy LH, Sharma R, Chuttani K, Mishra A, Murthy R. 2005. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice. J Control Release. 105:185–198.
  • Reddy MK, Labhasetwar V. 2009. Nanoparticle-mediated delivery of superoxide dismutase to the brain: An effective strategy to reduce ischemia-reperfusion injury. FASEB J. 23:1384–1395.
  • Rittchen S, Boyd A, Burns A, Park J, Fahmy TM, Metcalfe S, Williams A. 2015. Myelin repair in vivo is increased by targeting oligodendrocyte precursor cells with nanoparticles encapsulating leukaemia inhibitory factor (LIF). Biomaterials. 56:78–85.
  • Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JEN, Omidfar K. 2014. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids. 181:56–61.
  • Rupp R, Rosenthal SL, Stanberry LR. 2007. VivaGel™(SPL7013 Gel): A candidate dendrimer–microbicide for the prevention of HIV and HSV infection. Int J Nanomedicine. 2:561–566.
  • Rutishauser H, Gutknecht M. 1976. Parabolische und hyperbolische partielle Differentialgleichungen. Vorlesungen über Numerische Mathematik. Basel: Springer.
  • Sarker DK. 2005. Engineering of nanoemulsions for drug delivery. Curr Drug Deliv. 2:297–310.
  • Schäfer R, Ayturan M, Bantleon R, Kehlbach R, Siegel G, Pintaske J, Conrad S, Wolburg H, Northoff H, Wiskirchen J. 2008. The use of clinically approved small particles of iron oxide (SPIO) for labeling of mesenchymal stem cells aggravates clinical symptoms in experimental autoimmune encephalomyelitis and influences their in vivo distribution. Cell Transpl. 17:923–941.
  • Schmidt J, Metselaar JM, Wauben MH, Toyka KV, Storm G, Gold R. 2003. Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain. 126:1895–1904.
  • Schubert D, Dargusch R, Raitano J, Chan S-W. 2006. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun. 342:86–91.
  • Sestak JO, Fakhari A, Badawi AH, Siahaan TJ, Berkland C. 2014. Structure, size, and solubility of antigen arrays determines efficacy in experimental autoimmune encephalomyelitis. AAPS J. 16:1185–1193.
  • Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, Wang J, Tang J, Fan M, Van Kirk E. 2010. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc. 132:4259–4265.
  • Siglienti I, Bendszus M, Kleinschnitz C, Stoll G. 2006. Cytokine profile of iron-laden macrophages: Implications for cellular magnetic resonance imaging. J Neuroimmunol. 173:166–173.
  • Silva A, González-Mira E, García M, Egea M, Fonseca J, Silva R, Santos D, Souto E, Ferreira D. 2011. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids Surf B Biointerfaces. 86:158–165.
  • Soni S, Babbar AK, Sharma RK, Maitra A. 2006. Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels. J Drug Target. 14:87–95.
  • Stevens PJ, Sekido M, Lee RJ. 2004. A folate receptor–targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug. Pharm Res. 21:2153–2157.
  • Stoll G, Bendszus M. 2010. New approaches to neuroimaging of central nervous system inflammation. Curr Opin Neurol. 23:282–286.
  • Surtees RA, Rodeck C, Clayton PT. 1992. Aromatic L-amino acid decarboxylase deficiency: Clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology. 42:1980–1988.
  • Svenson S, Chauhan AS, Reyna LA, Tomalia DA. 2006. Starburst® and Priostar™ dendrimers for controlled drug delivery applications. Polym Preprints. 47:150.
  • Taogoshi T, Nomura A, Murakami T, Nagai J, Takano M. 2005. Transport of prostaglandin E1 across the blood‐brain barrier in rats. J Pharm Pharmacol. 57:61–66.
  • Teeranachaideekul V, Müller RH, Junyaprasert VB. 2007. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC) – Effects of formulation parameters on physicochemical stability. Int J Pharm. 340:198–206.
  • Tian X-H, Lin X-N, Wei F, Feng W, Huang Z-C, Wang P, Ren L, Diao Y. 2011. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomedicine. 6:445–452.
  • Tila D, Ghasemi S, Yazdani-Arazi SN, Ghanbarzadeh S. 2015. Functional liposomes in the cancer-targeted drug delivery. J Biomater Appl. 30:3–16.
  • Tiwari S, Tan Y-M, Amiji M. 2006. Preparation and in vitro characterization of multifunctional nanoemulsions for simultaneous MR imaging and targeted drug delivery. J Biomed Nanotechnol. 2:217–224.
  • Tomalia DA, Fréchet JM. 2002. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J Polym Sci A Polym Chem 40:2719–2728.
  • Vanpouille-Box C, Lacoeuille F, Roux J, Aubé C, Garcion E, Lepareur N, Oberti F, Bouchet F, Noiret N, Garin E. 2011. Lipid nanocapsules loaded with rhenium-188 reduce tumor progression in a rat hepatocellular carcinoma model. PLoS One. 6:e16926.
  • Venishetty VK, Samala R, Komuravelli R, Kuncha M, Sistla R, Diwan PV. 2013. β-Hydroxybutyric acid grafted solid lipid nanoparticles: A novel strategy to improve drug delivery to brain. Nanomedicine Nanotechnol Biol Med. 9:388–397.
  • Vinogradov S, Batrakova E, Kabanov A. 1999. Poly-(ethylene glycol)–polyethyleneimine NanoGel™ particles: Novel drug delivery systems for antisense oligonucleotides. Colloids Surf B Biointerfaces. 16:291–304.
  • Vinogradov SV. 2007. Polymeric nanogel formulations of nucleoside analogs. Expert Opin Drug Deliv. 4:5–17.
  • Vinogradov SV, Batrakova EV, Kabanov AV. 2004. Nanogels for oligonucleotide delivery to the brain. Bioconj Chem. 15:50–60.
  • Vinogradov SV, Kabanov AV. 2004. Synthesis of Nanogel carriers for delivery of active phosphorylated nucleoside analogues. In: Papers presented at the meeting of American Chemical Society. Division of Polymer Chemistry. NIH Public Access. Polymer Prepr. 228(Pt 2):296.
  • Vyas TK, Shahiwala A, Amiji MM. 2008. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm. 347:93–101.
  • Wållberg M, Bergquist J, Achour A, Breij E, Harris RA. 2007. Malondialdehyde modification of myelin oligodendrocyte glycoprotein leads to increased immunogenicity and encephalitogenicity. Eur J Immunol. 37:1986–1995.
  • Wang C, Wu C, Zhu J, Miller RH, Wang Y. 2011a. Design, synthesis, and evaluation of coumarin-based molecular probes for imaging of myelination. J Med Chem. 54:2331–2340.
  • Wang H, Leeuwenburgh SC, Li Y, Jansen JA. 2011b. The use of micro- and nanospheres as functional components for bone tissue regeneration. Tissue Eng B Rev. 18:24–39.
  • Wang Y, Su W, Li Q, Li C, Wang H, Li Y, Cao Y, Chang J, Zhang L. 2013. Preparation and evaluation of lidocaine hydrochloride-loaded TAT-conjugated polymeric liposomes for transdermal delivery. Int J Pharm. 441:748–756.
  • Warntjes J, Leinhard OD, West J, Lundberg P. 2008. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage. Magn Resonance Med. 60:320–329.
  • Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD, Galin FS, Folkerts G, Nijkamp FP, Blalock JE. 2006. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med. 12:317–323.
  • Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA. 2010. Superparamagnetic iron oxide nanoparticles: Diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab. 30:15–35.
  • Weissert R. 2013. The immune pathogenesis of multiple sclerosis. J Neuroimmune Pharmacol. 8:857–866.
  • Wickline SA, Lanza GM. 2003. Nanotechnology for molecular imaging and targeted therapy. Circulation. 107:1092–1095.
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. 2012. Nanoparticles as drug delivery systems. Pharmacol Rep. 64:1020–1037.
  • Wohlfart S, Gelperina S, Kreuter J. 2012. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release. 161:264–273.
  • Wohlfart S, Khalansky AS, Gelperina S, Begley D, Kreuter J. 2011. Kinetics of transport of doxorubicin bound to nanoparticles across the blood–brain barrier. J Control Release. 154:103–107.
  • Wong HL, Wu XY, Bendayan R. 2012. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev. 64:686–700.
  • Xie F, Yao N, Qin Y, Zhang Q, Chen H, Yuan M, Tang J, Li X, Fan W, Zhang Q. 2012. Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting. Int J Nanomed. 7:163–175.
  • Xie Z-X, Zhang H-L, Wu X-J, Zhu J, Ma D-H, Jin T. 2015. Role of the immunogenic and tolerogenic subsets of dendritic cells in multiple sclerosis. Mediators Inflamm. 2015:513295.
  • Xu L, Zhang H, Wu Y. 2013. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci. 5:2–13.
  • Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, Xi Y, Li Y. 2009. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 30:226–232.
  • Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, Wang C. 2010. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomed Nanotechnol Biol Med. 6:427–441.
  • Yazdani Y, Keyhanvar N, Kalhor HR, Rezaei A. 2013. Functional analyses of recombinant mouse hepcidin-1 in cell culture and animal model. Biotechnol Lett. 35:1191–1197.
  • Yazdani Y, Sadeghi H, Alimohammadian M, Andalib A, Moazen F, Rezaei A. 2011. Expression of an innate immune element (mouse hepcidin-1) in baculovirus expression system and the comparison of its function with synthetic human hepcidin-25. Iran J Pharm Res. 10:559–568.
  • Ye J, Wang Q, Zhou X, Zhang N. 2008. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. Int J Pharm. 352:273–279.
  • Yeste A, Nadeau M, Burns EJ, Weiner HL, Quintana FJ. 2012. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 109:11270–11275.
  • Youssef T, Fadel M, Fahmy R, Kassab K. 2012. Evaluation of hypericin-loaded solid lipid nanoparticles: Physicochemical properties, photostability and phototoxicity. Pharm Dev Technol. 17:177–186.
  • Yuan B, Zhao L, Fu F, Liu Y, Lin C, Wu X, Shen H, Yang Z. 2014. A novel nanoparticle containing MOG peptide with BTLA induces T cell tolerance and prevents multiple sclerosis. Mol Immunol. 57:93–99.
  • Yuan H, Wang L-L, Du Y-Z, You J, Hu F-Q, Zeng S. 2007. Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids Surf B Biointerfaces. 60:174–179.
  • Zhang P, Hu L, Yin Q, Feng L, Li Y. 2012. Transferrin-modified c [RGDfK]-paclitaxel loaded hybrid micelle for sequential blood-brain barrier penetration and glioma targeting therapy. Mol Pharm. 9:1590–1598.
  • Zhang Y, Petibone D, Xu Y, Mahmood M, Karmakar A, Casciano D, Ali S, Biris AS. 2014. Toxicity and efficacy of carbon nanotubes and graphene: The utility of carbon-based nanoparticles in nanomedicine. Drug Metab Rev. 46:232–246.
  • Zhao X, Zhao H, Chen Z, Lan M. 2014. Ultrasmall superparamagnetic iron oxide nanoparticles for magnetic resonance imaging contrast agent. J Nanosci Nanotechnol. 14:210–220.
  • Zhiryakova MV, Izumrudov VA. 2014. Interaction of astramol poly (propyleneimine) dendrimers with DNA and poly (methacrylate) anion in water and water–salt solutions. J Phys Chem B. 118:8819–8826.
  • Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng M-Q, Duong N, Schafbauer T, Huttner AJ, Huang Y, Carson RE. 2013. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc Natl Acad Sci USA. 110:11751–11756.
  • Zhu S, Xu G. 2010. Single-walled carbon nanohorns and their applications. Nanoscale. 2:2538–2549.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.