432
Views
19
CrossRef citations to date
0
Altmetric
Basic Research

Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro

, , , &
Pages 501-511 | Received 01 Feb 2016, Accepted 29 Feb 2016, Published online: 22 Mar 2016

References

  • Marraffa JM, Holland MG, Stork CM, et al. Diethylene glycol: widely used solvent presents serious poisoning potential. J Emerg Med. 2008;35:401–406.
  • Schier JG, Rubin CS, Miller D, et al. Medication-associated diethylene glycol mass poisoning: a review and discussion on the origin of contamination. J Public Health Policy. 2009;30:127–143.
  • Geiling EK, Cannon PR. Pathologic effects of elixir of sulfanilamide (diethylene glycol) poisoning: a clinical and experimental correlation: final report. J Am Med Assoc. 1938;111:919–926.
  • Rentz ED, Lewis L, Mujica OJ, et al. Outbreak of acute renal failure in Panama in 2006: a case–control study. Bull World Health Organ. 2008;86:749–756.
  • Conklin L, Sejvar JJ, Kieszak S, et al. Long-term renal and neurologic outcomes among survivors of diethylene glycol poisoning. JAMA Intern Med. 2014;174:912–917.
  • Akuse RM, Eke FU, Ademola AD, et al. Diagnosing renal failure due to diethylene glycol in children in a resource-constrained setting. Pediatr Nephrol. 2012;27:1021–1028.
  • Schep LJ, Slaughter RJ, Temple WA, et al. Diethylene glycol poisoning. Clin Toxicol. 2009;47:525–535.
  • Landry GM, Dunning CL, Conrad T, et al. Diglycolic acid inhibits succinate dehydrogenase activity in human proximal tubule cells leading to mitochondrial dysfunction and cell death. Toxicol Lett. 2013;221:176–184.
  • Sosa NR, Rodriguez GM, Schier JG, et al. Clinical, laboratory, diagnostic, and histopathologic features of diethylene glycol poisoning-Panama, 2006. Ann Emerg Med. 2014;64:38–47.
  • Besenhofer LM, McLaren MC, Latimer B, et al. Role of tissue metabolite accumulation in the renal toxicity of diethylene glycol. Toxicol Sci. 2011;123:374–383.
  • Besenhofer LM, Adegboyega PA, Bartels M, et al. Inhibition of metabolism of diethylene glycol prevents target organ toxicity in rats. Toxicol Sci. 2010;117:25–35.
  • Schier JG, Hunt DR, Perala A, et al. Characterizing concentrations of diethylene glycol and suspected metabolites in human serum, urine, and cerebrospinal fluid samples from the Panama DEG mass poisoning. Clin Toxicol. 2013;51:923–929.
  • Landry GM, Dunning CL, Abreo F, et al. Diethylene glycol-induced toxicities show marked threshold dose response in rats. Toxicol Appl Pharmacol. 2015;282:244–251.
  • Landry GM, Martin S, McMartin KE. Diglycolic acid is the nephrotoxic metabolite in diethylene glycol poisoning inducing necrosis in human proximal tubule cells in vitro. Toxicol Sci. 2011;124:35–44.
  • Todd JH, McMartin KE, Sens DA . Enzymatic isolation and serum-free culture of human renal cells : retaining properties of proximal tubule cells. Methods Mol Med. 1996;2:431–435.
  • Lash LH, Putt DA, Cai H. Membrane transport function in primary cultures of human proximal tubular cells. Toxicology. 2006;228:200–218.
  • Lash LH, Putt DA, Cai H. Drug metabolism enzyme expression and activity in primary cultures of human proximal tubular cells. Toxicology. 2008;244:56–65.
  • Luttropp D, Schade M, Baer PC, et al. Respiration rate in human primary renal proximal and early distal tubular cells in vitro: Considerations for biohybrid renal devices. Biotechnol Prog. 2011;27:262–268.
  • Sikka P, McMartin KE. Normal rat kidney proximal tubule cells in primary and multiple subcultures. In Vitro Cell Dev Biol Anim. 1996;32:285–291.
  • Reers M, Smith TW, Chen LB. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry. 1991;30:4480–4486.
  • Lash L, Sall J. Mitochondrial isolation from liver and kidney: strategy, techniques, and criteria for purity. In: Lash LH, Jones DP, editors. Methods in toxicology, Vol 2 mitochondrial dysfunction. 2. New York: Academic Press; 1993.
  • Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Bernardi P. The mitochondrial permeability transition pore: a mystery solved? Front Physiol. 2013;4:95.
  • McMartin KE, Wallace KB. Calcium oxalate monohydrate, a metabolite of ethylene glycol, is toxic for rat renal mitochondrial function. Toxicol Sci. 2005;84:195–200.
  • Kuster U, Bohnensack R, Kunz W . Control of oxidative phosphorylation by the extra-mitochondrial ATP/ADP ratio . Biochim Biophys Acta. 1976;440:391–402.
  • Spinazzi M, Casarin A, Pertegato V, et al. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc. 2012;7:1235–1246.
  • McMartin K. Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning? Clin Toxicol. 2009;47:859–869.
  • Montekaitis RJ, Martell AE. New multidentate ligands. XXV. The coordination chemistry of divalent metal ions with diglycolic acid, carboxymethyltartronic acid and ditartronic acid. J Coord Chem. 1984;13:265–271.
  • Kim J-S, He L, Lemasters JJ. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun. 2003;304:463–470.
  • Wallace KB, Starkov AA. Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol. 2000;40:353–388.
  • Brand Martin D, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435:297–312.
  • Lodish H, Berk A, Zipursky S, et al. Molecular cell biology. 4th ed. New York: W. H. Freeman; 2000.
  • Gellerich FN, Gizatullina Z, Arandarcikaite O, et al. Extramitochondrial Ca2+ in the nanomolar range regulates glutamate-dependent oxidative phosphorylation on demand. PLoS One. 2009;4:e8181.
  • Gellerich FN, Gizatullina Z, Trumbeckaite S, et al. The regulation of OXPHOS by extramitochondrial calcium. Biochim Biophys Acta. 2010;1797:1018–1027.
  • Satrústegui J, Pardo B, del Arco A. Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev. 2007;87:29–67.
  • Forkink M, Smeitink JAM, Brock R, et al. Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochim Biophys Acta. 2010;1797:1034–1044.
  • Gobe G, Crane D. Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicol Lett. 2010;198:49–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.