112
Views
14
CrossRef citations to date
0
Altmetric
Review Article

The proteinase-rich proteome of Bothrops jararaca venom

, , &
Pages 169-184 | Received 23 Jan 2014, Accepted 01 May 2014, Published online: 11 Jun 2014

References

  • Alape-Girón A, Sanz L, Escolano J, et al. (2008). Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res 7:556–71
  • Anderson SG, Ownby CL. (1997). Pathogenesis of hemorrhage induced by proteinase H from eastern diamondback rattlesnake (Crotalus adamanteus) venom. Toxicon 35:1291–300
  • Antunes TC, Yamashita KM, Barbaro KC, et al. (2010). Comparative analysis of newborn and adult Bothrops jararaca snake venoms. Toxicon 56:1443–58
  • Assakura MT, Reichl AP, Mandelbaum FR. (1986). Comparison of immunological, biochemical and biophysical properties of three hemorrhagic factors isolated from the venom of Bothrops jararaca (jararaca). Toxicon 24:943–6
  • Assakura MT, Silva CA, Mentele R, et al. (2003). Molecular cloning and expression of structural domains of bothropasin, a P-III metalloproteinase from the venom of Bothrops jararaca. Toxicon 41:217–27
  • Baldo C, Jamora C, Yamanouye N, et al. (2010). Mechanisms of vascular damage by hemorrhagic snake venom metalloproteinases: tissue distribution and in situ hydrolysis. PLoS Negl Trop Dis 4:727
  • Baldo C, Tanjoni I, León IR, et al. (2008). BnP1, a novel P-I metalloproteinase from Bothrops neuwiedi venom: biological effects benchmarking relatively to jararhagin, a P-III SVMP. Toxicon 51:54–65
  • Barrett AJ, Rawlings ND. (1995). Families and clans of serine peptidases. Arch Biochem Biophys 318:247–50
  • Berger M, Pinto AF, Guimarães JA. (2008). Purification and functional characterization of bothrojaractivase, a prothrombin-activating metalloproteinase isolated from Bothrops jararaca snake venom. Toxicon 51:488–501
  • Bjarnason JB, Fox JW. (1994). Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther 62:325–72
  • Bjarnason JB, Fox JW. (1995). Snake venom metalloendopeptidases: reprolysins. Methods Enzymol 248:345–68
  • Brasil. (2001). Manual de diagnóstico e tratamento de acidentes por animais peçonhentos. Brasília: Ministério da Saúde, Fundação Nacional de Saúde, 112 pp
  • Calvete JJ. (2011). Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev Proteomics 8:739–58
  • Calvete JJ, Borges A, Segura A, et al. (2009). Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: contributing to its taxonomy and snakebite management. J Proteomics 72:227–40
  • Calvete JJ, Sanz L, Pérez A, et al. (2011). Snake population venomics and antivenomics of Bothrops atrox: paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J Proteomics 74:510–27
  • Campbell JA, Lamar WW. (2004). The venomous reptiles of the Western hemisphere. Ithaca, New York: Comstock (Cornell University Press)
  • Casal MA. (1817). Corografia Brazílica. Rio de Janeiro: Instituto Nacional do Livro, 1945 pp
  • Cidade DA, Simão TA, Dávila AM, et al. (2006). Bothrops jararaca venom gland transcriptome: analysis of the gene expression pattern. Toxicon 48:437–61
  • Clissa PB, Laing GD, Theakston RD, et al. (2001). The effect of jararhagin, a metalloproteinase from Bothrops jararaca venom, on pro-inflammatory cytokines released by murine peritoneal adherent cells. Toxicon 39:1567–73
  • Clissa PB, Lopes-Ferreira M, Della-Casa MS, et al. (2006). Importance of jararhagin disintegrin-like and cysteine-rich domains in the early events of local inflammatory response. Toxicon 47:591–6
  • Costa EP, Clissa PB, Teixeira CF, Moura-da-Silva AM. (2002). Importance of metalloproteinases and macrophages in viper snake envenomation-induced local inflammation. Inflammation 26:13–17
  • da Silva IR, Lorenzetti R, Rennó AL, et al. (2012). BJ-PI2, a non-hemorrhagic metalloproteinase from Bothrops jararaca snake venom. Biochim Biophys Acta 1820:1809–21
  • Daltry JC, Wüster W, Thorpe RS. (1996). Diet and snake evolution. Nature 379:537–40
  • De-Luca M, Ward CM, Ohmori K, et al. (1995). Jararhagin and jaracetin: novel snake venom inhibitors of the integrin collagen receptor, alpha 2 beta 1. Biochem Biophys Res Commun 206:570–6
  • Denson KW, Rousseau WE. (1970). Separation of the coagulant components of Bothrops jararaca venom. Toxicon 8:15–19
  • Deshimaru M, Ogawa T, Nakashima K, et al. (1996). Accelerated evolution of crotalinae snake venom gland serine proteases. FEBS Lett 397:83–8
  • Dias GS, Kitano ES, Pagotto AH, et al. (2013). Individual variability in the venom proteome of juvenile Bothrops jararaca specimens. J Proteome Res 12:4585–98
  • Eagle H. (1937). The coagulation of blood by snake venoms and its physiologic significance. J Exp Med 65:613–39
  • Escalante T, Nunez J, Moura-da-Silva AM, et al. (2003). Pulmonary hemorrhage induced by jararhagin, a metalloproteinase from Bothrops jararaca snake venom. Toxicol Appl Pharmacol 193:17–28
  • Fenwick MA, Gutberlet RL Jr, Evans JA, Parkinson CL. (2009). Zoolog J Linnean Soc 156:617–40
  • Fernandez JH, Silva CA, Assakura MT, et al. (2005). Molecular cloning, functional expression, and molecular modeling of bothrostatin, a new highly active disintegrin from Bothrops jararaca venom. Biochem Biophys Res Commun 329:457–64
  • Fontana F. (1781). Traité sur le Vénin de La Vipère, sur lês Poisons Amèricains, sur Le Laurier-Cerise et sur quelques autres Poisons Vegetaux. Florence: Gibelin
  • Fox JW, Ma L, Nelson K, et al. (2006). Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Toxicon 47:700–14
  • Fox JW, Serrano SM. (2005). Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 45:969–85
  • Fox JW, Serrano SM. (2008a). Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics 8: 909–20
  • Fox JW, Serrano SM. (2008b). Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 275:3016–30
  • Furtado MF, Maruyama M, Kamiguti AS, Antonio LC. (1991). Comparative study of nine Bothrops snake venoms from adult female snakes and their offspring. Toxicon 29:219–26
  • Furtado MF, Travaglia-Cardoso SR, Rocha MM. (2006). Sexual dimorphism in venom of Bothrops jararaca (Serpentes: Viperidae). Toxicon 48:401–10
  • Gallagher P, Bao Y, Serrano SM, et al. (2005). Role of the snake venom toxin jararhagin in proinflammatory pathogenesis: in vitro and in vivo gene expression analysis of the effects of the toxin. Arch Biochem Biophys 441:1–15
  • Gomis-Ruth FX, Kress LF, Bode W. (1993). First structure of a snake venom metalloproteinase: a prototype for matrix metalloproteinases/collagenases. EMBO J 12:4151–7
  • Greene HW. (1983). Dietary correlates of the origin and radiation of snakes. Am Zool 23:431–41
  • Gutiérrez JM, Lomonte B, León G, et al. (2009). Snake venomics and antivenomics: proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J Proteomics 72:165–82
  • Gutiérrez JM, Rucavado A, Escalante T, Díaz C. (2005). Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon 45:997–1011
  • Habermann E. (1958). Über das thrombin ähnlich wirkende Prinzip von Jararacagift. Naunyn-Schmiedeberg's Arch Exp Path Pharmak 234:291–302
  • Habermann E. (1959). Über Zusammenhänge zwischen esterolytischen und pharmakologischen Wirkungen von Jararacagift, Kallikrein und Thrombin. Naunyn-Schmiedebergs Arch Exper Pathol Pharmakol 236:492–502
  • Habermann E. (1961). Zuordnung pharmakologischer und enzymatischer Wirkungen von Kallikrein und Schlangengiften mittels Diisopropylfluorophosphat und Elektrophorese. Naunyn-Schmiedebergs Arch exper Pathol Pharmakol 240:552–72
  • Hawgood BJ. (1995). Abbé Felice Fontana (1730–1805): founder of modern toxinology. Toxicon 33:591–601
  • Henriques OB, Fichman M, Henriques SB. (1960). Partial purification and some properties of the blood-clotting factor from the venom of Bothrops jararaca. Biochem J 75:551–6
  • Henriques OB, Fichman M, Henriques SB, Oliveira, M. (1960). Fractionation of the venom of Bothrops jararaca by ammonium sulphate. Purification of some of the fractions obtained. Mem Inst Butantan 29:181–95
  • Henriques ES, Fonseca N, Ramos MJ. (2004). On the modeling of snake venom serine proteinase interactions with benzamidine-based thrombin inhibitors. Protein Sci 13:2355–69
  • Henriques OB, Lavras AAC, Fichman M, et al. (1958). The proteolytic activity of the venom of Bothrops jararaca. Biochem J 68:597–605
  • Henriques OB, Mandelbaum FR, Henriques SB. (1959). Blood-clotting activity of the venom of Bothrops jararaca. Nature 183:114–15
  • Holtz P, Raudonat, HW. (1956). Über Beziehungen zwischen proteolytischer Aktivität und blutcoagulierender sowie bradykinin-freisetzender Wirkung von Schlangengiften. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 229:113–22
  • Huang KF, Chiou SH, Ko TP, et al. (2002). The 1.35 A structure of cadmium-substituted TM-3, a snakevenom metalloproteinase from Taiwan habu: elucidation of a TNFa-converting enzyme-like active-site structure with a distorted octahedral geometry of cadium. Acta Crystallogr D Biol Crystallogr 58:1118–28
  • Igarashi T, Araki S, Mori H, Takeda S. (2007) Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins. FEBS Lett 581:2416–22
  • Itoh N, Tanaka N, Funakoshi I, et al. (1988). The complete nucleotide sequence of the gene for batroxobin, a thrombin-like snake venom enzyme. Nucleic Acids Res 16:10377–8
  • Kamiguti AS, Gallagher P, Marcinkiewicz C, et al. (2003). Identification of sites in the cysteine-rich domain of the class P-III snake venom metalloproteinases responsible for inhibition of platelet function. FEBS Lett 549:129–34
  • Kamiguti AS, Hay CR, Theakston RD, Zuzel M. (1996). Insights into the mechanism of haemorrhage caused by snake venom metalloproteinases. Toxicon 34:627–42
  • Kamiguti AS, Moura-da-Silva AM, Laing GD, et al. (1997). Collagen-induced secretion-dependent phase of platelet aggregation is inhibited by the snake venom metalloproteinase jararhagin. Biochim Biophys Acta 1335:209–17
  • Lacerda JB. (1884). Leçons sur le venin des serpents du Brésil et sur la méthode de traitement des morsures venimeuses par le permanganate de potasse. Rio de Janeiro: Lombaerts and Co., 125
  • Laing GD, Clissa PB, Theakston RDG, et al. (2003). Inflammatory pathogenesis of snake venom metalloproteinase induced skin necrosis. Eur J Immunol 33:3458–63
  • Li M, Fry BG, Kini RM. (2005). Eggs-only diet: its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii). J Mol Evol 60:81–9
  • Maeno H, Mitsuhashi S, Sato R. (1960). Studies on Habu snake venom. Studies on H beta-proteinase of Habu venom. Jpn J Microbiol 4:173–80
  • Mandelbaum FR, Assakura MT. (1988). Antigenic relationship of hemorrhagic factors and proteases isolated from the venoms of three species of Bothrops snakes. Toxicon 26:379–85
  • Mandelbaum FR, Henriques OB. (1964). Purification and properties of Bothrops protease A. Arch Biochem Biophys 104:369–74
  • Mandelbaum FR, Reichl AP, Assakura MT. (1976). Some physical and biochemical characteristics of HF2, one of the hemorrhagic factors in the venom of Bothrops jararaca. Anim Plant Microb Toxins 1:111–21
  • Mandelbaum FR, Reichl AP, Assakura MT. (1982). Isolation and characterization of a proteolytic enzyme from the venom of the snake Bothrops jararaca (jararaca). Toxicon 20:955–72
  • Maroun RC, Serrano SM. (2004). Identification of the substrate-binding exosites of two snake venom serine proteinases: molecular basis for the partition of two essential functions of thrombin. J Mol Recognit 17:51–61
  • Marques-Porto R, Lebrun I, Pimenta DC. (2008). Self-proteolysis regulation in the Bothrops jararaca venom: the metallopeptidases and their intrinsic peptidic inhibitor. Comp Biochem Physiol C Toxicol Pharmacol 147:424–33
  • Martins M, Marques OAV, Sazima I. (2002). Ecological and phylogenetic correlates of feeding habits in neotropical pitvipers of the genus Bothrops. In: Schuett GW, Höggren M, Douglas ME, Green HW, eds. Biology of the vipers. Eagle Mountain: Eagle Mountain Publishing Lc, 1–22
  • Maruyama M. (2013). Jararafibrases II-IV of Bothrops jararaca. In: Rawlings, ND, Salvensen, GS, eds. Handbook of proteolytic enzymes. 3rd ed. Oxford: Academic Press, 995–7
  • Maruyama M, Sugiki M, Yoshida E, et al. (1992). Purification and characterization of two fibrinolytic enzymes from Bothrops jararaca (jararaca) venom. Toxicon 30:853–64
  • Maruyama M, Tanigawa M, Sugiki M, et al. (1993). Purification and characterization of low molecular weight fibrinolytic/hemorrhagic enzymes from snake (Bothrops jararaca) venom. Enzyme Protein 47:124–35
  • Menezes MC, Oliveira AK, Melo RL, et al. (2011). Disintegrin-like/cysteine-rich domains of the reprolysin HF3: site-directed mutagenesis reveals essential role of specific residues. Biochimie 93:345–51
  • Menezes MC, Paes Leme AF, Melo RL, et al. (2008). Activation of leukocyte rolling by the cysteine-rich domain and the hyper-variable region of HF3, a snake venom hemorrhagic metalloproteinase. FEBS Lett 582:3915–21
  • MEROPS database. http://merops.sanger.ac.uk/ Accessed on January 10, 2014
  • Monteiro J. (1610). Relação da Província do Brasil. In: Leite S, ed. História da Companhia de Jesus no Brasil. Lisboa-Rio de Janeiro: Instituto Nacional do Livro, 1949
  • Moura-da-Silva AM, Butera D, Tanjoni I. (2007). Importance of snake venom metalloproteinases in cell biology: effects on platelets, inflammatory and endothelial cells. Curr Pharm Des 13:2893–905
  • Moura-da-Silva AM, Della-Casa MS, David AS, et al. (2003). Evidence for heterogeneous forms of the snake venom metalloproteinase jararhagin: a factor contributing to snake venom variability. Arch Biochem Biophys 409:395–401
  • Moura-da-Silva AM, Línica A, Della-Casa MS, et al. (1999). Jararhagin ECD-containing disintegrin domain: expression in Escherichia coli and inhibition of the platelet-collagen interaction. Arch Biochem Biophys 369:295–301
  • Moura-da-Silva AM, Paine MJI. (2013). Jararhagin. In: Rawlings ND, Salvensen GS, eds. Handbook of proteolytic enzymes. 3rd ed. Oxford: Academic Press, 987–90
  • Moura-da-Silva AM, Ramos OH, Baldo C, et al. (2008). Collagen binding is a key factor for the hemorrhagic activity of snake venom metalloproteinases. Biochimie 90:484–92
  • Muniz JR, Ambrosio AL, Selistre-de-Araujo HS, et al. (2008). The three-dimensional structure of bothropasin, the main hemorrhagic factor from Bothrops jararaca venom: insights for a new classification of snake venom metalloprotease subgroups. Toxicon 52:807–16
  • Murayama N, Saguchi K, Mentele R, et al. (2003). The unusual high molecular mass of Bothrops protease A, a trypsin-like serine peptidase from the venom of Bothrops jararaca, is due to its high carbohydrate content. Biochim Biophys Acta 1652:1–6
  • Nagase H, Woessner JF Jr. (1999). Matrix metalloproteinases. J Biol Chem 274:21491–4
  • Nahas L, MacFarlane RG, Denson KW. (1964). A study of the coagulant action of eight snake venoms. Thromb Diath Haemorrh 12:355–67
  • Nishida S, Fujimura Y, Miura S, et al. (1994). Purification and characterization of bothrombin, a fibrinogen-clotting serine protease from the venom of Bothrops jararaca. Biochemistry 33:1843–9
  • Odell GV, Ferry EC, Vick LM, et al. (1998). Citrate inhibition of snake venom proteases. Toxicon 36:1801–6
  • Ohno M, Chijiwa T, Oda-Ueda N, et al. (2003). Molecular evolution of myotoxic phospholipases A2 from snake venom. Toxicon 42:841–54
  • Okonogi T, Hoshi S, Honma M, et al. (1960). Studies on the Habu snake venom. A comparative study of histopathological changes caused by crude venom, purified Habu-proteinase and other proteinases Jpn J Microbiol 4:189–92
  • Oliveira AK, Paes Leme AF, Asega AF, et al. (2010). New insights into the structural elements involved in the skin haemorrhage induced by snake venom metalloproteinases. Thromb Haemost 104:485–97
  • Oliveira AK, Paes Leme AF, Assakura MT, et al. (2009). Simplified procedures for the isolation of HF3, bothropasin, disintegrinlike/cysteine-rich protein and a novel P-I metalloproteinase from Bothrops jararaca venom. Toxicon 53:97–801
  • Paes Leme AF, Escalante T, Pereira JG, et al. (2011). High resolution analysis of snake venom metalloproteinase (SVMP) peptide bond cleavage specificity using proteome based peptide libraries and mass spectrometry. J Proteomics 74:401–10
  • Paes Leme AF, Kitano ES, Furtado MF, et al. (2009). Analysis of the subproteomes of proteinases and heparin-binding toxins of eight Bothrops venoms. Proteomics 9:733–45
  • Paes Leme AF, Prezoto BC, Yamashiro ET, et al. (2008). Bothrops protease A, a unique highly glycosylated serine proteinase, is a potent, specific fibrinogenolytic agent. J Thromb Haemost 6:1363–72
  • Paes Leme AF, Sherman NE, Smalley DM, et al. (2012). Hemorrhagic activity of HF3, a snake venom metalloproteinase: insights from the proteomic analysis of mouse skin and blood plasma. J Proteome Res 11:279–91
  • Paine MJ, Desmond HP, Theakston RD, Crampton JM. (1992). Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem 267:22869–76
  • Parry MA, Jacob U, Huber R, et al. (1998). The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases. Structure 6:1195–206
  • Queiroz LS, Santo Neto H, Assakura MT, et al. (1985). Pathological changes in muscle caused by haemorrhagic and proteolytic factors from Bothrops jararaca snake venom. Toxicon 23:341–5
  • Reichl AP, Assakura MT, Mandelbaum FR. (1983). Biophysical properties and amino acid composition of Bothrops protease A, a proteolytic enzyme isolated from the venom of the snake Bothrops jararaca (jararaca). Toxicon 21:421–7
  • Ribeiro LA, Jorge MT. (1997). Acidente por serpentes do gênero Bothrops: série de 3.139 casos. Rev Soc Bras Med Trop 30:475–80
  • Robeva A, Politi V, Shannon JD, et al. (1991). Synthetic and endogenous inhibitors of snake venom metalloproteinases. Biomed Biochim Acta 50:769–73
  • Rocha e Silva M, Andrade S0. (1945). Estudos sobre a dicoumarina – 3,3′-metilenobis – (4-hidroxicoumarina). II Efeito coagulante de venenos dos gêneros Bothrops e Crotalus sobre o plasma oxalato de animais normais e tratados pela Dicoumarina. Arch Inst Biol S Paulo 16:115–20
  • Rocha e Silva M, Beraldo WT, Rosenfeld G. (1949). Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and trypsin. Am J Physiol 156:261–73
  • Rosenfeld G. (1971). Symptomatology, pathology and treatment of snake bites in South America. In: Bucherl W, Buckley E, eds. Venomous animals and their venoms. New York: Academic Press, 345–84
  • Saguchi K, Hagiwara-Saguchi Y, Murayama N, et al. (2005). Molecular cloning of serine proteinases from Bothrops jararaca venom gland. Toxicon 46:72–83
  • Santos BF, Serrano SM, Kuliopulos A, Niewiarowski S. (2000). Interaction of viper venom serine peptidases with thrombin receptors on human platelets. FEBS Lett 477:199–202
  • Sasa M. (1999). Diet and snake venom evolution: can local selection alone explain intraspecific venom variation? Toxicon 37:249–52
  • Sazima I. (1992). Natural history of the jararaca pitviper, Bothrops jararaca, in southeastern Brazil. In: Campbell JA, Brodie ED, eds. Biology of pitvipers. Tyler, TX: Selva, 199–216
  • Serrano SM (2013). Platelet-aggregating endopeptidase of Bothrops jararaca venom. In: Rawlings ND, Salvensen GS, eds. Handbook of proteolytic enzymes. 3rd ed. Oxford: Academic Press, 3041–3
  • Serrano SM, Hagiwara Y, Murayama N, et al. (1998). Purification and characterization of a kinin-releasing and fibrinogen-clotting serine proteinase (KN-BJ) from the venom of Bothrops jararaca, and molecular cloning and sequence analysis of its cDNA. Eur J Biochem 251:845–53
  • Serrano SM, Kim J, Wang D, et al. (2006). The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting. J Biol Chem 281:39746–56
  • Serrano SM, Maroun R. (2005). Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 45:1115–32
  • Serrano SM, Mentele R, Sampaio CA, Fink E. (1995). Purification, characterization, and amino acid sequence of a serine proteinase, PA-BJ, with platelet-aggregating activity from the venom of Bothrops jararaca. Biochemistry 34:7186–93
  • Serrano SM, Sampaio CA, Mandelbaum FR. (1993). Basic proteinases from Bothrops moojeni (caissaca) venom – II. Isolation of the metalloproteinase MPB. Comparison of the proteolytic activity on natural substrates by MPB, MSP 1 and MSP 2. Toxicon 31:483–92
  • Serrano SM, Sampaio CA, Mentele R, et al. (2000). A novel fibrinogen-clotting enzyme, TL-BJ, from the venom of the snake Bothrops jararaca: purification and characterization. Thromb Haemost 83:438–44
  • Serrano SM, Shannon JD, Wang D, et al. (2005). A multifaceted analysis of viperid snake venoms by two-dimensional gel electrophoresis: an approach to understanding venom proteomics. Proteomics 5:501–10
  • Serrano SM, Wang D, Shannon JD, et al. (2007). Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor mediated platelet aggregation. FEBS J 274:3611–21
  • Silva CA, Zuliani JP, Assakura MT, et al. (2004). Activation of alpha(M)beta(2)-mediated phagocytosis by HF3, a P-III class metalloproteinase isolated from the venom of Bothrops jararaca. Biochem Biophys Res Commun 322:950–6
  • Stöcker W, Grams F, Baumann U, et al. (1995). The metzincins-topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 4:823–40
  • Takeda S, Igarashi T, Mori H. (2007). Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases. FEBS Lett 581:5859–64
  • Takeda S, Igarashi T, Mori H, Araki S. (2006). Crystal structures of VAP1 reveal ADAMs’ MDC domain architecture and its unique C-shaped scaffold. EMBO J 25:2388–96
  • Takeda S, Takeya H, Iwanaga S. (2012). Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochim Biophys Acta 1824:164–76
  • Tanizaki MM. (2013). Bothrolysin. In: Rawlings, ND, Salvensen, GS, eds. Handbook of proteolytic enzymes. 3rd ed. Oxford: Academic Press, 991–2
  • Tanizaki MM, Kawasaki H, Suzuki K, Mandelbaum FR. (1991). Purification of a proteinase inhibitor from the plasma of Bothrops jararaca (jararaca). Toxicon 29:673–81
  • Tanizaki MM, Zingali RB, Kawazaki H, et al. (1989). Purification and some characteristics of a zinc metalloprotease from the venom of Bothrops jararaca (jararaca). Toxicon 27:747–55
  • Tanjoni I, Weinlich R, Della-Casa M, et al. (2005). Jararhagin, a snake venom metalloproteinase, induces a specialized form of apoptosis (anoikis) selective to endothelial cells. Apoptosis 10:851–61
  • Usami Y, Fujimura Y, Miura S, et al. (1994). A 28 kDa-protein with disintegrin-like structure (jararhagin-C) purified from Bothrops jararaca venom inhibits collagen- and ADP-induced platelet aggregation. Biochem Biophys Res Commun 201:331–9
  • Vanzolini PE. (1946). Regressão do peso sobre o comprimento em Bothrops jararaca e sua variação sexual e estacional. Papéis Avulsos Zoologia–São Paulo–Brasil 7:271–92
  • von Klobusitzky D. (1936). Biochemische Studien über die Gifte der Schlangengattung Bothrops. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 180:479–81
  • von Klobusitzky D, König P. (1939). Biochemische Studien über die Gifte der Schlangengattung Bothrops. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 192:271–5
  • Warrell DA. (2004). Snakebites in Central and South America: epidemiology, clinical features, and clinical management. In: Campbell JA, Lamar WW, eds. The venomous reptiles of the Western hemisphere. Ithaca, New York: Comstock Cornell University Press, 709–61
  • Watanabe L, Shannon JD, Valente RH, et al. (2003). Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue damaging activities. Protein Sci 12:2273–81
  • Zelanis A, Andrade-Silva D, Rocha MM, et al. (2012a). A transcriptomic view of the proteome variability of newborn and adult Bothrops jararaca snake venoms. PLoS Negl Trop Dis 6:e1554
  • Zelanis A, Serrano SM, Reinhold VN. (2012b). N-glycome profiling of Bothrops jararaca newborn and adult venoms. J Proteomics 75:774–82
  • Zelanis A, Tashima AK, Pinto AF, et al. (2011) Bothrops jararaca venom proteome rearrangement upon neonate to adult transition. Proteomics 11:4218–28
  • Zelanis A, Tashima AK, Rocha MM, et al. (2010). Analysis of the ontogenetic variation in the venom proteome/peptidome of Bothrops jararaca reveals different strategies to deal with prey. J Proteome Res 9:2278–91
  • Zhang D, Botos I, Gomis-Ruth FX, et al. (1994). Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase atrolysin C (form d). Proc Natl Acad Sci USA 91:8447–51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.