249
Views
44
CrossRef citations to date
0
Altmetric
Review Article

Rear-fanged snake venoms: an untapped source of novel compounds and potential drug leads

, &
Pages 185-201 | Received 03 Apr 2014, Accepted 02 Jul 2014, Published online: 24 Jul 2014

References

  • Assakura MT, Reichl AP, Mandelbaum FR. (1994). Isolation and characterization of five fibrin(ogen)olytic enzymes from the venom of Philodryas olfersii (green snake). Toxicon 32:819–31
  • Au LC, Lin SB, Chou JS, et al. (1993). Molecular cloning and sequence analysis of the cDNA for ancrod, a thrombin-like enzyme from the venom of Calloselasma rhodostoma. Biochem J 294:387–90
  • Bajwa SS, Kirakossian H, Reddy KN, et al. (1982). Thrombin-like and fibrinolytic enzymes in the venoms from the Gaboon viper (Bitis gabonica), Eastern cottonmouth moccasin (Agkistrodon p. piscivorus) and Southern copperhead (Agkistrodon c. contortrix) snakes. Toxicon 20:427–32
  • Banerjee Y, Mizuguchi J, Iwanaga S, et al. (2005). Hemextin AB complex-a unique anticogulant protein complex from Hemachatus haemachatus (African Ringhals cobra) venom that inhibits clot initiation and factor VIIa activity. J Biol Chem 280:42601–11
  • Barr CS, Rhondes P, Struthers AD. (1996). C-type natriuretic peptide. Peptides 17:1243–51
  • Biel M, Zong X, Ludwig A, et al. (1996). Molecular cloning and expression of the modulatory subunit of the cyclic nucleotide-gated cation channel. J Biol Chem 271:6349–55
  • Bodi I, Mikala G, Koch SE, et al. (2005). The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115:3306–17
  • Bradley KN. (2000). Muscarinic toxins from the green mamba. Pharmacol Ther 85:87–109
  • Broaders M, Ryan MF. (1997). Enzymatic properties of the Duvernoy's secretion of Blanding's tree snake (Boiga blandingi) and of the mangrove snake (Boiga dendrophila). Toxicon 35:1143–8
  • Brown RL, Haley TL, West KA, et al. (1999). Pseudechetoxin: a peptide blocker of cyclic nucleotide-gated ion channels. Proc Natl Acad Sci USA 96:754–75
  • Calvete JJ. (2013). Snake venomics: from the inventory of toxins to biology. Toxicon 75:44–62
  • Ching AT, Rocha MM, Paes Leme AF, et al. (2006). Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy's (venom) gland transcriptome. FEBS Lett 580:4417–22
  • Ching AT, Paes Leme AF, Zalanis A, et al. (2012). Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes. J Proteome Res 11:1152–62
  • Christensen PA. (1968). The venoms of Central and South African snakes. In: Bucherl W, Buckley EE, Deulofeu V, eds. Venomous animals and their venoms. New York: Academic Press, 437–61
  • Desjeux P. (1992). Human leishmaniases: epidemiology and public health aspects. World Health Stat Q 45:267–75
  • Distler M, Biel M, Flockerzi V, et al. (1994). Expression of cyclic nucleotide-gated cation channels in non-sensory tissues and cells. Neuropharmacology 33:1275–82
  • Doley R, Zhou X, Kini RM. (2010). Snake venom phospholipase A2 enzymes. In: Mackessy SP, ed. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press/Taylor & Francis Group, 173–205
  • DuBourdieu DJ, Kawaguchi H, Shier WT. (1987). Molecular weight variations in the diversity of phospholipase A2 forms in reptile venoms. Toxicon 25:333–43
  • Durkin JP, Pickwell GV, Trotter JT, et al. (1981). Phospholipase A2 electrophoretic variants in reptile venoms. Toxicon 19:535–46
  • Ferlan I, Ferlan A, King T, Russell FE. (1983). Preliminary studies on the venom of the colubrid snake Rhabdophis subminatus (red-necked keelback). Toxicon 21:570–4
  • Fox JW, Serrano SM. (2005). Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 45:969–85
  • Fox JW, Serrano SM. (2007). Approaching the golden age of natural product pharmaceuticals from venom libraries: an overview of toxins and toxin-derivatives currently involved in therapeutic or diagnostic applications. Curr Pharm Des 13:2927–34
  • Fruchart-Gaillard C, Mourier G, Blanchet G, et al. (2012). Engineering of three-finger fold toxins creates ligands with original pharmacological profiles for muscarinic and adrenergic receptors. PLoS One 7:e39166
  • Fry BG, Wüster W, Ryan Ramjan SF, et al. (2003a). Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications. Rapid Commun Mass Spectrom 17:2047–62
  • Fry BG, Lumsden NG, Wüster W, et al. (2003b). Isolation of a neurotoxin (a-colubritoxin) from a ‘nonvenomous’ colubrid: evidence for early origin of venom in snakes. J Mol Evol 57:446–52
  • Fry BG, Vidal N, Norman JA, et al. (2006). Early evolution of the venom system in lizards and snakes. Nature 439:584–8
  • Fry BG, Scheib H, van der Weerd L, et al. (2008). Evolution of an arsenal structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol Cell Proteomics 7:215–46
  • Gan ZR, Gould RJ, Jacobs JW, et al. (1988). Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J Biol Chem 263:19827–32
  • Greene HW. (1997). Snakes: the evolution of mystery in nature. Berkeley, CA: University of California Press
  • Guan AL, Retzios AD, Henderson GN, et al. (1991). Purification and characterization of a fibrinolytic enzyme from venom of the southern copperhead snake Agkistrodon contortrix contortrix. Arch Biochem Biophys 289:197–207
  • Hegde RP, Rajagopalan N, Doley R, Kini RM. (2010). Snake venom three finger toxins. In: Mackessy SP, ed. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press/Taylor & Francis Group, 287–301
  • Heyborne WH, Mackessy SP. (2010). Cysteine-rich secretory proteins in reptile venoms. In: Mackessy SP, ed. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press/Taylor & Francis Group, 325–36
  • Heyborne WH, Mackessy SP. (2013). Identification and characterization of a taxon-specific three-finger toxin from the venom of the Green Vinesnake Oxybelis fulgidus; family Colubridae). Biochimie 95:1923–32
  • Hiestand PC, Hiestand RR. (1979). Dispholidus typus (boomslang) snake venom: purification and properties of the coagulant principle. Toxicon 17:489–98
  • Huang P, Mackessy SP. (2004). Biochemical characterization of phospholipase A2 (trimorphin) from the venom of the Sonoran Lyre Snake Trimorphodon biscutatus lambda (family Colubridae). Toxicon 44:27–36
  • Higuchi S, Murayama N, Saguchi K, et al. (1999). Bradykinin-potentiating peptides and C-type natriuretic peptides from snake venom. Immunopharmacology 44:129–35
  • Hill RE, Mackessy SP. (1997). Venom yields from several species of colubrid snakes and differential effects of ketamine. Toxicon 35:671–8
  • Hill RE, Mackessy SP. (2000). Characterization of venom (Duvernoy’s secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins. Toxicon 38:1663–87
  • Kardong KV, Lavin-Murcio PA. (1993). Venom delivery of snakes as high-pressure and low-pressure systems. Copeia 644–50
  • Kamiguti AS, Theakston RDG, Sherman N, Fox JW. (2000). Mass spectrophotometric evidence for P-III/P-IV metalloproteinases in the venom of the boomslang (Dispholidus typus). Toxicon 38:1613–20
  • Kaupp UB, Seifert R. (2002). Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824
  • Kini RM. (1997). Phospholipase A2: a complex multifunctional protein puzzle. In: Kini RM, ed. Venom phospholipase A2 enzymes: structure, function and mechanism. New York: Wiley, 1–28
  • Kini RM. (2002). Molecular molds with multiple missions: functional sites in three-finger toxins. Clin Exp Pharmacol Physiol 29:815–22
  • Kini RM. (2006). Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J 397:377–87
  • Kini RM, Doley R. (2010). Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 56:855–67
  • Kochva E. (1965). The development of the venom gland in the opisthoglyph snake Telescopus fallax with remarks on Thamnophis sirtalis (Colubridae, Reptilia). Copeia 1965:147–54
  • Komori K, Konishi M, Maruta Y, et al. (2006). Characterization of a novel metalloproteinase in Duvernoy's gland of Rhabdophis tigrinus tigrinus. J Toxicol Sci 31:157–68
  • Lomonte B, Tsai WC, Ureña-Diaz JM, et al. (2014). Venomics of New World pit vipers: Genus-wide comparisons of venom proteomes across Agkistrodon. J Proteomics 96:103–16
  • Lu Q, Clemetson JM, Clemetson KJ. (2005a). Snake venoms and hemostasis. J Thromb Haemost 3:1791–9
  • Lu Q, Navdaev A, Clemetson JM, et al. (2005b). Snake venom C-type lectins interacting with platelet receptors. Structure–function relationships and effects on haemostasis. Toxicon 45:1089–98
  • Lumsden NG, Fry BG, Kini RM, et al. (2004). In vitro neuromuscular activity of ‘colubrid’ venoms: clinical and evolutionary implications. Toxicon 43:819–27
  • Lumsden NG, Fry BG, Ventura S, et al. (2005). Pharmacological characterisation of a neurotoxin from the venom of Boiga dendrophila (Mangrove catsnake). Toxicon 45:329–34
  • Lumsden NG, Banerjee Y, Kini RM, et al. (2007). Isolation and characterization of rufoxin, a novel protein exhibiting neurotoxicity from venom of the psammophiine, Rhamphiophis oxyrhynchus (Rufous beaked snake). Neuropharmacology 52:1065–70
  • Lumsden NG, Khambata RS, Hobbs AJ. (2010). C-type natriuretic peptide (CNP): cardiovascular roles and potential as a therapeutic target. Curr Pharm Des 16:4080–8
  • Mackessy SP. (1991). Morphology and ultrastructure of the venom glands of the northern Pacific rattlesnake Crotalus viridis oreganus. J Morphol 208:109–28
  • Mackessy SP. (1993). Kallikrein-like and thrombin-like proteases from the venom of juvenile northern Pacific rattlesnakes (Crotalus viridis oreganus). J Nat Toxins 2:223–39
  • Mackessy SP. (2002). Biochemistry and pharmacology of colubrid snake venoms. J Toxicol Toxin Rev 2:43–83
  • Mackessy SP. (2008). Venom composition in rattlesnakes: trends and biological significance. In: Hayes WK, Cardwell MD, Beaman KR, Bush SP, eds. The biology of rattlesnakes. Loma Linda: Loma Linda University Press, 495–510
  • Mackessy SP. (2010a). The field of reptile toxinology: snakes, lizards and their venoms. In: Mackessy SP, ed. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press/Taylor & Francis Group, 3–23
  • Mackessy SP. (2010b). Thrombin-like enzymes in snake venoms. In: Kini RM, Clemetson KJ, Markland FS, McLane MA, Morita T, eds. Toxins and hemostasis: from bench to bedside. Berlin: Springer-Verlag, 519–57
  • Mackessy SP, Sixberry NM, Heyborne WH, Fritts T. (2006). Venom of the Brown Treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Toxicon 47:537–48
  • Markland FS, Swenson S. (2010). Fibrolase: trials and tribulations. Toxins 2:793–808
  • Matulef K, Zagotta WN. (2003). Cyclic nucleotide-gated ion channels. Annu Rev Cell Dev Biol 19:23–44
  • Mebs D. (1968). Analysis of Leptodeira annulata venom. Herpetologica 1968:338–9
  • Minea RO, Helchowski CM, Zidovetzki SJ, et al. (2010). Vicrostatin – an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities. PLoS One 5:e10929
  • Monteiro RQ, Bock PE, Bianconi ML, et al. (2001). Characterization of bothrojaracin interaction with human prothrombin. Protein Sci 10:1897–904
  • Mourier G, Servent D, Zinn-Justin S, et al. (2000). Chemical engineering of a three-fingered toxin with anti-α7 neuronal acetylcholine receptor activity. Protein Eng 13:217–25
  • Mukherjee AK, Saikia D, Thakur R. (2011). Medical and diagnostic applications of snake venom proteomes. J Proteins Proteomics 2:31–40
  • Nirthanan S, Gwee MCE. (2004). Three-finger a-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J Pharm Sci 94:1–17
  • OmPraba G, Chapeaurouge A, Doley R, et al. (2010). Identification of a novel family of snake venom proteins Veficolins from Cerberus rynchops using a venom gland transcriptomics and proteomics approach. J Proteome Res 9:1882–93
  • Parkes DG, Mace KF, Trautmann ME. (2013). Discovery and development of exenatide: the first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1. Expert Opin Drug Disc 8:219–44
  • Pawlak J, Mackessy SP, Fry BG, et al. (2006). Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (mangrove catsnake) with bird-specific activity. J Biol Chem 281:29030–41
  • Pawlak J, Mackessy SP, Sixberry NM, et al. (2009). Irditoxin, a novel covalently linked heterodimeric three finger toxin with high taxon-specific neurotoxicity. FASEB J 23:534–45
  • Peichoto ME, Teibler P, Mackessy SP, et al. (2007). Purification and characterization of patagonfibrase, a metalloproteinase showing α-fibrinogenolytic and hemorrhagic activities, from Philodryas patagoniensis snake venom. Biochim Biophys Acta 1770:810–19
  • Peichoto ME, Mackessy SP, Teibler P, et al. (2009). Purification and characterization of a cysteine-rich secretory protein from Philodryas patagoniensis snake venom. Comp Biochem Physiol C Toxicol Pharmacol 150:79–84
  • Peichoto ME, Leme AFP, Pauletti BA, et al. (2010). Autolysis at the disintegrin domain of patagonfibrase, a metalloproteinase from Philodryas patagoniensis (Patagonia Green Racer; Dipsadidae) venom. BBA-Proteins Proteom 1804:1937–42
  • Peichoto ME, Tavares FL, DeKrey G, et al. (2011a). A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: identification of a protein with inhibitory activity against the parasite. Toxicon 58:28–34
  • Peichoto ME, Zychar BC, Tavares FL, et al. (2011b). Inflammatory effects of patagonfibrase, a metalloproteinase from Philodryas patagoniensis (Patagonia Green Racer; Dipsadidae) venom. Exp Biol Med 236:1166–72
  • Peichoto ME, Tavares FL, Santoro ML, et al. (2012). Venom proteomes of South and North American opisthoglyphous (Colubridae and Dipsadidae) snake species: a preliminary approach to understanding their biological roles. Comp Biochem Physiol D Genom Proteom 7:361–9
  • Pyron RA, Burbrink FT, Wiens JJ. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 13:93–145
  • Rajagopalan N, Pung YF, Zhu YZ, et al. (2007). β-Cardiotoxin: a new three-finger toxin from Ophiophagus hannah (king cobra) venom with β-blocker activity. FASEB J 21:3685–95
  • Rath S, Trivelin LA, Imbrunito TR, et al. (2003). Antimoniais empregados no tratamento da leishmaniose: estado da arte. Quim Nova 26:550–5
  • Rich S, Kaufmann E, Levy PS. (1992). The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 327:76–81
  • Rosenberg HI, Bdolah A, Kochva E. (1985). Lethal factors and enzymes in the secretion from Duvernoy's gland of three colubrid snakes. J Exp Zool 233:5–14
  • Sajevic T, Leonardi A, Križaj I. (2011). Haemostatically active proteins in snake venoms. Toxicon 57:627–45
  • Saviola AJ, Chiszar D, Busch C, et al. (2013). Molecular basis for prey relocation in viperid snakes. BMC Biol 11:20
  • Savitzky AH. (1980). The role of venom delivery strategies in snake evolution. Evolution 34:1194–204
  • Scarborough RM, Rose JW, Naughton MA, et al. (1993). Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem 268:1058–65
  • Schweitz H, Vigne P, Moinier D, et al. (1992). A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem 267:13928–32
  • Sherman DG. (2002). Ancrod. Curr Med Res Opin 18:s48–52
  • Takacs Z, Nathan S. (2014). Animal venoms in medicine. In: Wexler P, ed. Encyclopedia of toxicology, 3rd ed. London: Elsevier, 252–9
  • Tanaka KA, Key NS, Levy JH. (2009). Blood coagulation: hemostasis and thrombin regulation. Anesth Analg 108:1433–46
  • Taub AM. (1966). Ophidian cephalic glands. J Morphol 118:529–41
  • Vidal N. (2002). Colubroid systematics: evidence for an early appearance of the venom apparatus followed by extensive evolutionary tinkering. J Toxicol Toxin Rev 2:21–41
  • Vidal N, Delmas AS, David P, et al. (2007). The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. C R Biol 330:182–7
  • Vonk FJ, Admiraal JF, Jackson K, et al. (2008). Evolutionary origin and development of snake fangs. Nature 454:630–3
  • Vonk FJ, Jackson K, Doley R, et al. (2011). Snake venom: from fieldwork to the clinic. Bioessays 33:269–79
  • Wang J, Shen B, Guo M, et al. (2005). Blocking effect and crystal structure of natrin toxin, a cysteine-rich secretory protein from Naja atra venom that targets the BKCa channel. Biochemistry 44:10145–52
  • Weldon CL, Mackessy SP. (2010). Biological and proteomic analysis of venom from the Puerto Rican Racer (Alsophis portoricensis: Dipsadidae). Toxicon 55:558–69
  • Weldon CL, Mackessy SP. (2012). Alsophinase, a new P-III metalloproteinase with α-fibrinogenolytic and hemorrhagic activity from the venom of the rear-fanged Puerto Rican Racer Alsophis portoricensis (Serpentes: Dipsadidae). Biochimie 94:1189–98
  • Weinstein SA, Stiles BG, McCoid MJ, et al. (1993). Variation of lethal potencies and acetylcholine receptor binding activity of Duvernoy's secretions from the brown tree snake, Boiga irregularis Merrem. J Nat Toxins 2:187–98
  • Weinstein SA, Kardong KV. (1994). Properties of Duvernoy's secretions from opisthoglyphous and aglyphous colubrid snakes. Toxicon 32:1161–85
  • Weinstein SA, Warrell DA, White J, et al. (2011). Venomous bites from non-venomous snakes: a critical analysis of risk and management of “Colubrid” snake bites. London: Elsevier, 364
  • Yamazaki Y, Koike H, Sugiyama Y, et al. (2002). Cloning and characterization of novel snake venom proteins that block smooth muscle contraction. Eur J Biochem 269:2708–15
  • Young BA, Herzog F, Friedel P, et al. (2011). Tears of venom: hydrodynamics of reptilian envenomation. Phys Rev Lett 106:198103
  • Young BA, Kardong KV. (1996). Dentitional surface features in snakes (Reptilia: Serpentes). Amphibia-Reptilia 17:261–76
  • Zelanis A, Teixera de Rocha MM, Domingues Furtado MF. (2010). Preliminary biochemical characterization of the venoms of five Colubridae species from Brazil. Toxicon 55:666–9
  • Zimmerman AL. (1995). Cyclic nucleotide gated channels. Curr Opin Neurobiol 5:296–303

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.