631
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Pharmacology of spider venom toxins

, &
Pages 206-220 | Received 22 Apr 2014, Accepted 08 Aug 2014, Published online: 15 Sep 2014

References

  • Adams ME. (2004). Agatoxins: ion channel specific toxins from the American funnel web spider, Agelenopsis aperta. Toxicon 43:509–25
  • Andrade E, Villanova F, Borra P, et al. (2008). Penile erection induced in vivo by a purified toxin from the Brazilian spider Phoneutria nigriventer. BJU Int 102:835–7
  • Antunes E, Marnagoni RA, Borges NC, et al. (1993). Effects of Phoneutria nigriventer venom on rabbit vascular smooth muscle. Braz J Med Biol Res 26:81–91
  • Appel MH, da Silveira RB, Chaim OM, et al. (2008). Identification, cloning and functional characterization of a novel dermonecrotic toxin (phospholipase D) from brown spider (Loxosceles intermedia) venom. Biochim Biophys Acta 1780:167–78
  • Atkinson RK, Wright LG. (1992). The involvement of collagenase in the necrosis induced by the bites of some spiders. Comp Biochem Physiol 102C:125–8
  • Bailey P, Wilce J. (2001). Venom as a source of useful biologically active molecules. Emerg Med (Fremantle) 13:28–36
  • Balaji RA, Sasaki T, Gopalakrishnakone P, et al. (1999). Isolation and characterization of a novel myotoxic peptide (Covalitoxin-I) from Corecnemius validus (Singapore tarantula) venom. Proceedings of the 5th Asia-pacific Congress on Animal, Plant and Microbial Toxins, Pattaya, Thailand, 39
  • Barbaro KC, Knysak I, Martins R, et al. (2005). Enzymatic characterizations, antigenic cross reactivity and neutralization of dermonecrotic activity of five Loxosceles spider venoms of medical importance in the America. Toxicon 45:489–99
  • Barla F, Higashijima H, Funai S, et al. (2009). Inhibitive effects of alkyl gallates on hyaluronidase and collagenase. Biosci Biotechnol Biochem 73:2335–7
  • Baron A, Diochot S, Salinas M, et al. (2013).Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon 75:187–204
  • Bento AC, Novello JC, Marangoni S, et al. (1993). Identification of a new vascular smooth muscle contracting polypeptide in Phoneutria nigriventer spider venom. Biochem Pharmacol 14:1092–5
  • Bheekha-Escura R, MacGlashan Jr DW, Langdon JM, MacDonald SM. (2000). Human recombinant histamine-releasing factor activates human eosinophils and the eosinophilic cell line, AML14–3D10. Blood 96:2191
  • Binford GJ, Cordes MH, Wells MA. (2005). Sphingomyelinase D from venoms of Loxosceles spiders: evolutionary insights from cDNA sequences and gene structure. Toxicon 45:547–60
  • Bode F, Sachs F, Franz MR. (2001). Tarantula peptide inhibits atrial fibrillation. Nature 409:35–6
  • Botzki A, Rigden DJ, Braun S, et al. (2004). L-Ascorbic acid. 6-hexadecanoate a potent hyaluronidase inhibitor, X-ray structure and molecular modeling of enzyme-inhibitor complexes. J Biol Chem 279:45990–7
  • Brown MR, Sheumack DD, Tyler MI, Howden ME. (1988). Amino acid sequence of versutoxin, a lethal neurotoxin from the venom of the funnel-web spider Atrax versutus. Biochem J 2:401–5
  • Browne G. (1997). Near fatal envenomation from the funnel-web spider in an infant. Pediatr Emerg Care 13:271–3
  • Calvete JJ. (2009). Venomics: digging into the evolution of venomous systems and learning to twist nature to fight pathology. J Proteomics 72:121–6
  • Catalán A, Cortes W, Sagua H, et al. (2011). Two new phospholipase D isoforms of Loxosceles laeta: cloning, heterologous expression, functional characterization, and potential biotechnological application. J Biochem Mol Toxicol 25:393–403
  • Cesar LM, Mendes MA, Tormena CF, et al. (2005). Isolation and chemical characterization of PwTx-II: a novel alkaloid toxin from the venom of the spider Parawixia bistriata (Araneidae, Araneae). Toxicon 46:786–96
  • Chaim OM, Trevisan-Silva D, Chaves-Moreira D, et al. (2011). Brown spider (Loxosceles genus) venom toxins: tools for biological purposes. Toxins (Basel) 3:309–44
  • Chaves-Moreira D, Chaim OM, Sade YB, et al. (2009). Identification of a direct hemolytic effect dependent on the catalytic activity induced by phospholipase-D (dermonecrotic toxin) from brown spider venom. J Cell Biochem 107:655–66
  • Chaves-Moreira D, Souza FN, Fogaça RT, et al. (2011). The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin. J Cell Biochem 112:2529–40
  • Clement H, Olvera A, Rodriguez M, et al. (2012). Identification, cDNA cloning and heterologous expression of a hyaluronidase from the tarantula Brachypelma vagans venom. Toxicon 60:1223–7
  • Cohen E, Quistad GB. (1998). Cytotoxic effects of arthropod venom on various cultured cells. Toxicon 36:353–8
  • Cunha RB, Barbaro KC, Muramatsu D, et al. (2003). Purification and characterization of Loxnecrogin a dermonecrotic toxin from Loxosceles gaucho Brown spider venom. J Prot Chem 22:135–46
  • da Silveira RB, Chaim OM, Mangili OC, et al. (2007a). Hyaluronidases in Loxosceles intermedia (Brown spider) venom are endo- β-N-acetyl-D-hexosaminidases hydrolases. Toxicon 49:758–68
  • da Silveira RB, Filho JFS, Mangili OC, et al. (2002). Identification of proteases in the extract of venom glands from brown spider. Toxicon 40:815–22
  • da Silveira RB, Pigozzo RB, Chaim OM, et al. (2006). Molecular cloning and functional characterization of two isoforms of dermonecrotic toxin from Loxosceles intermedia (Brown spider) venom gland. Biochimie 88:1241–53
  • da Silveira RB, Pigozzo RB, Chaim OM, et al. (2007b). Two novel dermonecrotic toxins LiRecDT4 and LiRecDT5 from brown spider (Loxosceles intermedia) venom: from cloning to functional characterization. Biochimie 89:289–300
  • da Silveira RB, Wille AC, Chaim OM, et al. (2007c). Identification, cloning, expression and functional characterization of an astacin-like metalloprotease toxin from Loxosceles intermedia (brown spider) venom. J Biochem 406:355–63
  • Dantas AE, Horta CC, Martins TM, et al. (2014). Whole venom of Loxosceles similis activates caspases-3, -6, -7, and -9 in human primary skin fibroblasts. Toxicon 84:56–64
  • Davletov B, Ferrari E, Ushkaryov Y. (2012). Presynaptic neurotoxins: an expanding array of natural and modified molecules. Cell Calcium 52:234–40
  • de la Motte CA, Hascall VC, Drazba J, et al. (2003). Mononuclear leukocytes bind to specific byaluronan structures on colon mucosal smooth muscle cells treated with polyenocinic acid: polycytidylic acid: inter-alpha-trypsin inhibitor is crucial to structure and function. Am J Pathol 163:121–33
  • de Santi Ferrara GI, Fernandes-Pedrosa Mde F, Junqueira-de-Azevedo Ide L, et al. (2009). SMase II a new sphingomyelinase D from Loxosceles laeta venom gland: molecular cloning, expression, function and structural analysis. Toxicon 53:743–53
  • de Souza GA, Ribeiro AS, Santos VLP, et al. (1998). Proteolytic effect of Loxosceles intermedia (brown spider) venom proteins on EHS-basement membrane structures. Acta Biologica Paranaense 27:97–109
  • Del Brutto OH. (2013). Neurological effects of venomous bites and stings: snakes, spiders, and scorpions. Handb Clin Neurol 114:349–68
  • Devaraja S, Girish KS, Devaraj VR, Kemparaju K. (2010). Factor Xa-like and fibrin(ogen)olytic activities of a serine protease from Hippasa agelenoides spider venom gland extract. J Thromb Thrombolysis 29:119–26
  • Devaraja S, Girish KS, Gowtham YN, Kemparaju K. (2011). The Hag-protease-II is a fibrin(ogen)ase from Hippasa agelenoides spider venom gland extract: purification, characterization and its role in hemostasis. Toxicon 57:248–58
  • Devaraja S, Nagaraju S, Mahadeshwara swamy YH, et al. (2008). A low molecular weight serine protease: purification and characterization from Hippasa agelenoides (Funnel web) spider venom gland extract. Toxicon 52:130–8
  • Dias-Lopes C, Felicori L, Guimarães G, et al. (2010). Cardiotoxic effects of Loxosceles intermedia spider venom and the recombinant venom toxin rLiD1. Toxicon 56:1426–35
  • Dias-Lopes C, Felicori L, Rubrecht L, et al. (2014). Generation and molecular characterization of a monoclonal antibody reactive with conserved epitope in sphingomyelinases D from Loxosceles spider venoms. Vaccine 11:2086–92
  • Elston DM, Eggers JS, Schmidt WE, et al. (2000). Histopathological findings after brown recluse spider envenomation. Am J Dermatopathol 22:242–6
  • Escoubas P, Diochot S, Corzo G. (2000). Structure and pharmacology of spider venom neurotoxins. Biochimie 82:893–907
  • Escoubas P, Rash L. (2004). Tarantulas: eight-legged pharmacists and combinatorial chemists. Toxicon 43:555–74
  • Feitosa L, Gremski W, Veiga SS, et al. (1998). Detection and characterization of metalloproteinases with gelatinolytic, fibronectinolytic and fibrinogenolytic activities in brown spider (Loxosceles intermedia) venom. Toxicon 36:1039–51
  • Fernandes-Pedrosa F, Junqueira-de-Azevedo L, Goncalves-de-Andrade RM, et al. (2008). Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics 9:279
  • Ferreira LAF, Alves WE, Lucas MS, Habermehl GG. (1996). Isolation and characterization of a bradykinin potentiating peptide (BPP-S) isolated from Scaptocosa raptoria venom. Toxicon 34:599–603
  • Ferrer VP, de Mari TL, Gremski LH, et al. (2013). A novel hyaluronidase from brown spider (Loxosceles intermedia) venom (Dietrich's Hyaluronidase): from cloning to functional characterization. PLoS Negl Trop Dis 2:e2206
  • Forrester LJ, Barrett JT, Cambell BJ. (1978). Red blood cell lysis induced by the venom of the brown recluse spider. The role of sphinomyelinase D. Arch Biochem Biophys 187:355–65
  • Futrell JM. (1992). Loxoscelism. Am J Med Sci 304:261–7
  • Geren CR, Chan TK, Howell DE, Odell GV. (1976). Isolation and characterization of toxin from Brown reclusa spider venom (Loxosceles recluse). Arch Biochem Biophys 174:90–9
  • Girish KS, Jagadeesha DK, Rajeev KB, Kemparaju K. (2002). Snake venom hyaluronidase: an evidence for isoforms and extracellular matrix degradation. Mol Cell Biochem 240:105–10
  • Girish KS, Kemparaju K. (2007). The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80:1921–43
  • Gremski LH, da Silveira RB, Chaim OM, et al. (2010). A novel expression profile of the Loxosceles intermedia spider venomous gland revealed by transcriptome analysis. Mol Biosyst 6:2403–16
  • Gremski LH, Trevisan-Silva D, Ferrer VP, et al. (2014). Recent advances in the understanding of brown spider venoms: from the biology of spiders to the molecular mechanisms of toxins. Toxicon 83:91–120
  • Greta J, Binford Matthew HJ, Cordes Michael A, Wells. (2005). Sphingomyelinase D from venoms of Loxosceles spiders: evolutionary insights from cDNA sequences and gene structure. Toxicon 45:547–60
  • Habermehl G. (1984). Gift- Tiere und ihre Waffen: Araneae (spinnen). Heidelberg: Springer, 29–40
  • Haeberli S, Kuhn-Nentwig L, Schaller J, Nentwig W. (2000). Characterisation of antibacterial activity of peptides isolated from the venom of the spider Cupiennius salei (Araneae: Ctenidae). Toxicon 38:373–80
  • He Q, Duan Z, Yu Y, et al. (2013). The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS One 28:e81357
  • Heitz JR, Norment BR. (1978). Characteristics of an alkaline phosphatase activity in brown recluse venom. Toxicon 12:181–7
  • Hernández-Campuzano B, Suárez R, Lina L, et al. (2009). Expression of a spider venom peptide in transgenic tobacco confers insect resistance. Toxicon 53:122–8
  • Hodgson WC. (1997). Pharmacological action of Australian animal venoms. Clin Exp Pharmacol Physiol 24:10–7
  • Inoue R, Jensen LJ, Jian Z, et al. (2009). Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circ Res 104:1399–409
  • Isbister GK, Gray MR. (2002). A prospective study of 750 definite spider bites, with expert spider identification. QJM 95:723–31
  • Isbister GK, White J. (2004). Clinical consequences of spider bites: recent advances in our understanding. Toxicon 43:477–92
  • Jackson H, Parks TN. (1989). Spider toxins: recent applications in neurobiology. Ann Rev Neurosci 12:405–14
  • Kaiser E, Raab W. (1967). Collagenolytic activity of snake and spider venoms. Toxicon 4:251–5
  • Kaiser E. (1956). Enzymatic activity of spider venoms. In: Buckley EE, Porges N, eds. Venoms. Washington DC: American Association for the Advancement of Science, 91–3
  • Kalapothakis E, Kushmerick C, Gusmao DR, et al. (2003). Effects of the venom of a Mygalomorph spider (Lasiodora sp.) on the isolated rat heart. Toxicon 41:23–8
  • King GF. (2011). Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 11:1469–84
  • King GF, Hardy MC. (2013). Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol 58:475–96
  • Kini RM, Evanas HJ. (1990). Effect of snake venom proteins on blood platelets. Toxicon 28:1387–422
  • Kini RM. (2005). Serine proteases affecting blood coagulation and fibrinolysis from snake venoms. Pathophysiol Haemost Thromb 34:200–4
  • Klint JK, Senff S, Rupasinghe DB, et al. (2012). Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads. Toxicon 15:478–91
  • Kuhn-Nentwig L, Schaller J, Nentwig W. (1994). Purification of toxic peptides and the aminoacid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae: ctenidae). Toxicon 32:287–302
  • Kuhn-Nentwig L, Willems J, Seebeck T, et al. (2011). Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells. Amino Acids 40:69–76
  • Kurpiewski G, Forrester LJ, Barrett JT, Campbell BJ. (1981). Platelet aggregation and sphingomyelinase D activity of a purified toxin from the venom of Loxosceles. recluse. Biochim Biophys Acta 678:467–76
  • Lane L, McCoppin HH, Dyer J. (2011). Acute generalized exanthematous pustulosis and Coombs-positive hemolytic anemia in a child following Loxosceles reclusa envenomation. Pediatr Dermatol 28:685–8
  • Lee CK, Chan TK, Ward BC, et al. (1974). The purification and characterization of a necrotoxin from tarantula Dugesiella hentzi, venom. Arch Biochem Biophys 164:341–50
  • Lee S, Lynch KR. (2005). Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA). Biochem J 391:317–23
  • Lopes PH, Bertani R, Gonçalves-de-Andrade RM, et al. (2013). Venom of the Brazilian spider Sicarius ornatus (Araneae, Sicariidae) contains active sphingomyelinase D: potential for toxicity after envenomation. PLoS Negl Trop Dis 22:e2394
  • Luciano MN, da Silva PH, Chaim OM, et al. (2004). Experimental evidence for a direct cytotoxicity of Loxosceles intermedia (Brown spider) venom in renal tissue. J Histochem Cytochem 52:455–67
  • Lung JM, Mallory SB. (2000). A child with spider bite and glomerulonephritis: a diagnostic challenge. Int J Dermatol 39:287–9
  • Magalhães GS, Caporrino MC, Della-Casa MS, et al. (2013). Cloning, expression and characterization of a phospholipase D from Loxosceles gaucho venom gland. Biochimie 95:1773–83
  • Majeski JA, Stinnet JD, Alexander JW, Durst SrGG. (1977). Action of venom from the brown recluse spider (Loxosceles recluse) on human neutrophils. Toxicon 15:423–7
  • Manzel EJ, Farr C. (1988). Hyaluronidases and its substrate: biochemistry, biological activities and therapeutic uses. Cancer Lett 131:3–11
  • Marangoni RA, Antunes E, Brain SD, de Nucci G. (1993). Activation by Phoneutria nigriventer (armed spider) venom of tissue kallikrein-kininogen-kinin system in rabbit skin in vivo. Br J Pharmacol 109:539–43
  • Matsubara FH, Gremski LH, Meissner GO, et al. (2013). A novel ICK peptide from the Loxosceles intermedia (brown spider) venom gland: cloning, heterologous expression and immunological cross-reactivity approaches. Toxicon 71:147–58
  • Mattiello-Sverzut AC, Fontana MD, Diniz CR, Cruz-Holfling MA. (1998). Pathological changes induced by PhTx1 from Phoneutria nigriventer spider venom in mouse skeletal muscle in vitro. Toxicon 36:1346–61
  • McKeown N, Vetter RS, Hendrickson RG. (2014). Verified spider bites in Oregon (USA) with the intent to assess hobo spider venom toxicity. Toxicon 84:51–5
  • Miller M, Whyte I, White J. (2000). Clinical features and management of Hadronyche. Toxicon 38:409–27
  • Min JW, Liu WH, He XH, Peng BW. (2013). Different types of toxins targeting TRPV1 in pain. Toxicon 71:66–75
  • Mirshafiey A. (2007). Venom therapy in multiple sclerosis. Neuropharmacology 53:353–61
  • Mourao CB, Heghinian MD, Barbosa EA, et al. (2013). Characterization of a novel peptide toxin from Acanthoscurria paulensis spider venom: a distinct cysteine assignment to the HWTX-II family. Biochemistry 52:2440–52
  • Murakami MT, Fernandes-Pedrosa MF, de Andrade SA, et al. (2006). Structural insights into the catalytic mechanism of sphingomyelinases D and evolutionary relationship to glycerophosphodiester phosphodiesterases. Biochem Biophys Res Commun 342:323–9
  • Mylecharane EJ, Spence I, Sheumack DD, et al. (1989). Actions of robustoxin, a neurotoxic polypeptide from the venom of the male funnel-web spider (Atrax robustus), in anaesthetized monkeys. Toxicon 27:481–92
  • Nagaraju S, Devaraja S, Kemparaju K. (2007a). Purification and properties of hyaluronidase from Hippasa partita (funnel web spider) venom gland extract. Toxicon 50:383–93
  • Nagaraju S, Girish KS, Fox JW, Kemparaju K. (2007b). ‘Partitagin’ a hemorrhagic metalloprotease from Hippasa partita spider venom: role in tissue necrosis. Biochimie 89:1322–31
  • Nagaraju S, Mahadeshwara swamy YH, Girish KS, Kemparaju K. (2006). Venom from spiders of the genus Hippasa: Biochemical and pharmacological studies. Comp Biochem Physiol 144:1–9
  • Neurath H. (1989). Proteolytic processing and physiological regulation. Trends Biochem Sci 14:268–71
  • Nimmrich V, Gross G. (2012). P/Q-type calcium channel modulators. Br J Pharmacol 167:741–59
  • Noble PW. (2002). Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol 21:25–9
  • Norment BR, Foil D. (1979). Histopathology and physiological action of venom from the brown reclusa spider Loxosceles recluse. Toxicon 17:131–6
  • Nunes KP, Torres FS, Borges MH, et al. (2013). New insights on arthropod toxins that potentiate erectile function. Toxicon 69:152–9
  • Patel KD, Modur V, Zimmerman GA, et al. (1994). The necrotic venom of brown recluse induces dysregulated endothelial cell-dependent neutrophil activation. J Clin Invest 94:631–42
  • Pauli I, Minozzo JC, da Silva PH, et al. (2009). Analysis of therapeutic benefits of antivenin at different time intervals after experimental envenomation in rabbits by venom of the brown spider (Loxosceles intermedia). Toxicon 53:660–71
  • Pincus SJ, Winkel KD, Hawdon GM, Sutherland SK. (1999). Acute and recurrent skin ulceration after spider bite. Med J Aust 171:99–102
  • Platnick NI. (2014). The world spider catalog, version 15. New York: American Museum of Natural History
  • Rafael B, da Silveira Jose F, dos Santos, Filho, et al. (2002). Identification of proteases in the extract of venom glands from brown spiders. Toxicon 40:815–22
  • Ramu Y, Xu Y, Lu Z. (2008). Engineered specific and high-affinity inhibitor for a subtype of inward-rectifier K+ channels. Proc Natl Acad Sci USA 105:10774–8
  • Rash LD, Hodgson WC. (2002). Pharmacology and biochemistry of spider venoms. Toxicon 40:225–54
  • Rego E, Bento AC, Lopes-Martins RA, et al. (1996). Isolation and partial characterization of a polypeptide from Phoneutria nigriventer spider venom that relaxes rabbit corpus cavernosum in vitro. Toxicon 34:1141–7
  • Reyes-Lugo M1, Sánchez T, Finol HJ, et al. (2009). Neurotoxic activity and ultrastructural changes in muscles caused bythe brown widow spider Latrodectus geometricus venom. Rev Inst Med Trop S Paulo 51:95–101
  • Rezende L Jr, Cordeiro MN, Oliveira EB, Diniz CR. (1991). Isolation of neurotoxin peptide from the venom of the ‘armed’ spider Phoneutria nigriventer. Toxicon 29:1225–33
  • Rimphanitchayakit V, Tassanakajon A. (2010). Structure and function of invertebrate Kazal-type serine proteinase inhibitors. Dev Comp Immunol 34:377–86
  • Rocha-E-Silva TA, Collares-Buzato CB, da Cruz-Höfling MA, Hyslop S. (2009a). Venom apparatus of the Brazilian tarantula Vitalius dubius Mello-Leitão 1923 (Theraphosidae). Cell Tissue Res 335: 617–29
  • Rocha-E-Silva TA, Sutti R, Hyslop S. (2009b). Milking and partial characterization of venom from the Brazilian spider Vitalius dubius (Theraphosidae). Toxicon 53:153–61
  • Rodrigues MC, Guimarães LH, Liberato JL, et al. (2006). Acid and alkaline phosphatase activities of a fraction isolated from Parawixia bistriata spider venom. Toxicon 47:854–8
  • Russell FE. (1996). Phophodiesterase of some snake and arthropod venoms. Toxicon 4:153–4
  • Sánchez-Olivas MA, Valencia-Zavala MP, Sánchez-Olivas JA, et al. (2011). Cutaneous necrotic loxoscelism. A case report. Rev Alerg Mex 58:171–6
  • Schanbacher FL, Lee CK, Wilson IB, et al. (1973). Purification and characterization of tarantula Dugesiella hentzi (Girard) venom hyaluronidase. Comp Biochem Physiol 44B:389–96
  • Schenone H, Suarez G. (1978). Venoms of Scytodidae. Genus Loxosceles, In: Bettini S, ed. Handbook of experimental pharmacology, Arthropod venoms. New York: Springer-Verlag 247–75
  • Senff-Ribeiro A, Henrique da Silva P, Chaim OM, et al. (2008). Biotechnological applications of brown spider (Loxosceles genus) venom toxins. Biotechnol Adv 26:210–8
  • Sheumack DD, Baldo BA, Carroll PR, et al. (1984). Comparative study of properties and toxic constituents of funnel web spider (Atrax) venoms. Comp Biochem Physiol 78:55–68
  • Shikata Y, Watanabe T, Teramato T, et al. (1995). Isolation and characterization of a peptide isomerase from funnel web spider venom. J Biol Chem 270:16719–23
  • Shikata Y, Ohe H, Mano N, et al. (1998). Structural analysis of N-linked carbohydrate chains of funnel web spider (Agelenopsis aperta) venom peptide isomerase. Biosci Biotechnol Biochem 62:1211–15
  • Sosnina NA, Golubenko Z, Akhunov AA, et al. (1999). Bradykinin-potentiating peptides from the spider Latrodectus tredecimguttatus-inhibitors of carboxycathepsin and of preparation pf karakurt venom kininase. Dokl Akad Nauk SSSR 315:236–9
  • Stock RP, Brewer J, Wagner K, et al. (2012). Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate. PLoS One 7:36003
  • Suarez G, Schenone H, Socías T. (1971). Loxosceles laeta venom-partial purification. Toxicon 9:291
  • Sun J, Wu Y, Wang J, et al. (2008). Novel translationally controlled tumor protein homologue in the buccal gland secretion of Lampetra japonica. Biochimie 90:1760–8
  • Sutti R, Tamascia ML, Hyslop S, Rocha-E-Silva TA. (2014). Purification and characterization of a hyaluronidase from venom of the spider Vitalius dubius (Araneae, Theraphosidae). J Venom Anim Toxins Incl Trop Dis 4:2
  • Tambourgi DV, De Sousa Da Silva M, Billington SJ, et al. (2002). Mechanism of induction of complement susceptibility of erythrocytes by spider and bacterial sphingomyelinases. Immunology 107:93–101
  • Tambourgi DV, Magnoli FC, Vanden Berg CW, et al. (1998). Sphingomyelinases in the venom of the spider Loxosceles intermedia are responsible for both dermonecrosis and complement dependent hemolysis. Biochem Biophys Res Commun 251:366–73
  • Tavares FL, Peichoto ME, Rangel Dde M, et al. (2011). Loxosceles gaucho spider venom and its sphingomyelinase fraction trigger the main functions of human and rabbit platelets. Hum Exp Toxicol 30:1567–74
  • Teixeira CFP, Fernandes CM, Zuliani JP, Zamuner SF. (2005). Inflammatory effects of snake venom metalloproteases. Mem Inst Oswaldo Cruz, Rio de Janeiro 100:181–4
  • Toole BP. (2004). Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–39
  • Trevisan-Silva D, Bednaski AV, Gremski LH, et al. (2013). Differential metalloprotease content and activity of three Loxosceles spider venoms revealed using two-dimensional electrophoresis approaches. Toxicon 76:11–22
  • Trevisan-Silva D, Gremski LH, Chaim OM, et al. (2010). Astacin-like metalloproteases are a gene family of toxins present in the venom of different species of the brown spider (genus Loxosceles). Biochimie 92:21–32
  • Ullah A, de Giuseppe PO, Murakami MT, et al. (2011). Crystallization and preliminary X-ray diffraction analysis of a class II phospholipase D from Loxosceles intermedia venom. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:234–6
  • Usmanov PB, Nuritova FA. (1994). The anticoagulant action of a phospholipase A from Ereus niger spider venom. Toxicon 32:625–8
  • Vadas P, Pruzanski W. (1984). Role of extracellular phospholipase A2 in inflammation. Adv Inflam Res 25:51–9
  • Van den Berg, CW, Gonçalves-de-Andrade RM, Okamoto CK, Tambourgi DV. (2012). C5a receptor is cleaved by metalloproteases induced by sphingomyelinase D from Loxosceles spider venom. Immunobiology 217:935–41
  • Vassilevski AA, Fedorova IM, Maleeva EE, et al. (2010). Novel class of spider toxin: active principle from the yellow sac spider Cheiracanthium punctorium venom is a unique two-domain polypeptide. J Biol Chem 32:293–302
  • Vassilevski AA, Grishin EV. (2011). Novel active principles from spider venom. Acta Chim Slov 8:717–23
  • Veiga SS, da Sliveria RR, Dreyfuss JL, et al. (2000). Identification of high molecular weight serine proteases in Loxosceles intermedia (Brown spider) venom. Toxicon 38:825–39
  • Veiga SS, Zanetti VC, Braz A, et al. (2001a). Extracellular matrix molecules as target for brown spider venom toxins. Braz J Med Biol Res 34:843–50
  • Veiga SS, Zanetti VC, Franco CRC, et al. (2001b). In vivo and in vitro cytotoxicity of brown spider venom for blood vessel endothelial cells. Throms Res 102:229–37
  • Villanova FE, Andrade E, Leal E, et al. (2009). Erection induced by Tx2–6 toxin of Phoneutria nigriventer spider: expression profile of genes in the nitric oxide pathway of penile tissue of mice. Toxicon 54:793–801
  • Vuitika L, Gremski LH, Belisário-Ferrari MR, et al. (2013). Brown spider phospholipase-D containing a conservative mutation (D233E) in the catalytic site: identification and functional characterization. J Cell Biochem 114:2479–92
  • Wang X, Smith R, Feltcher JI, et al. (1999). Structure-function studies of ω-atracotoxin, a potent antagonist of insect voltage-gated calcium channels. Eur J Biochem 264:488–94
  • Weisel-Eichler A, Libersat F. (2004). Venom effects on monoaminergic systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:683–90
  • White J, Cardoso JL, Fan HW. (1995). Clinical toxicology of spider bites. In: Meier J, White J, eds. Handbook of clinical toxicology of animal venoms and poisons. Boca Raton: CRC Press, 259–329
  • Williams ST, Khare VK, Johnston GA, Blackall DP. (1995). Severe intravascular hemolysis associated with brown recluse spider envenomation. Am J Clin Pathol 104:463–7
  • Windley MJ, Herzig V, Dziemborowicz SA, et al. (2012). Spider-venom peptides as bioinsecticides. Toxins (Basel) 4:191–227
  • Wong ES, Hardy MC, Wood D, et al. (2013). SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian Tarantula. PLoS One 22:662–79
  • Wright RP, Elgert KD, Campell BJ, Barrett JT. (1973). Hyaluronidase and esterase activities of the venom of poisonous brown recluse spider. Arch Biochem Biophys 159:415–26
  • Yan L, Adams ME. (1998). Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J Biol Chem 273:2059–66
  • Young AR, Pincus SJ. (2001). Comparison of enzymatic activity from three species of necrotizing arachnids in Australia: Loxosceles rufescens, Badumma insignis and Lampona cylindrata. Toxicon 39:391–400
  • Yuan CH, He QY, Peng K, et al. (2008). Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS One 3:e3414
  • Zanetti VC, da Silveria RB, Dreyfuss JL, et al. (2002). Morphological and biochemical evidence of blood vessel damage and fibrinogenolysis triggered by brown spider venom. Blood Coagul Fibrinolysis 13:135–48
  • Zobel-Thropp PA, Bodner MR, Binford GJ. (2010). Comparative analyses of venoms from American and African Sicarius spiders that differ in sphingomyelinase D activity. Toxicon 55:1274–82
  • Zobel-Thropp PA, Kerins AE, Binford GJ. (2012). Sphingomyelinase D in sicariid spider venom is a potent insecticidal toxin. Toxicon 1:265–71
  • Zucker MB. (1989). Platelet aggregation measured by photometric method. Methods Enzymol 169:117–33

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.