29
Views
17
CrossRef citations to date
0
Altmetric
Original

Membrane Channel activity and Translocation of Tetanus and Botulinum Neurotoxins

&
Pages 45-76 | Published online: 24 Sep 2010

References

  • Montecucco C., Papini E, Schiavo G. Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 1994; 346: 92–98
  • Montecucco C, Schiavo G. Mechanism of action of tetanus and botulinum neurotoxins. Molec Microbiol 1994; 13: 1–8
  • Collingridge G L, Herron C E (1985) Effects of tetanus toxin on GABA synapses in the mammalian central nervous system. “Seventh International Conference on Tetanus”. 1985, G Nisticò, P Mastroeni, M Pitzurra. Gangemi Publ Co, Rome, 127–142
  • Pasternak C A. Hole-istic science. New Biol 1992; 4: 132–135
  • Finkelstein A. The channel formed in planar lipid bilayers by the protective antigen component of anthrax toxin. Toxicology 1994; 87: 29–41
  • Gouaux E. Channel-forming toxins: tales of transformation. Curr Opin Struct Biol 1997; 7: 566–573
  • Simpson L L. The origin, structure and pharmacological activity of botulinum toxin. Pharmacol Rev 1981; 33: 155–188
  • Simpson L L. Molecular pharmacology of botulinum and tetanus toxin. Ann Rev Pharmacol Toxicol 1986; 26: 427–453
  • Simpson L L. Peripheral actions of the botulinum toxins. “Botulinum Neurotoxins and Tetanus Toxin”, L. L. Simpson. Academic Press, New York 1989; 153–178
  • Simpson L. L. Current concepts on the mechanism of action of clostridial neurotoxins. “Botulinum and Tetanus Neurotoxins: Neurotransmission and Biomedical Aspects”, D. A. DasGupta. Plenum Press, New York 1993; 5–15
  • Habennann E., Dryer F. Clostridial neurotoxins: handling and action at the cellular and molecular level. Curr Top Microbiol Immunol 1986; 129: 93–179
  • Schiavo G., Rossetto O., Montecucco C. Clostridial neurotoxins as tools to investigate the molecular events of neurotransmitter release. Sem Cell Biol 1994; 5: 221–229
  • Halpern J. L., Neale E. A. Neurospecific binding, internalization, and retrograde axonal transport. Curr Top Microbiol Immunol 1995; 195: 221–241
  • Singh B. R. Structure-function relationship of botulinum and tetanus neurotoxins. “Botulinum and Tetanus Neurotoxins: Neurotransmission and Biomedical Aspects”, B. R. DasGupta. Plenum Press, New York 1993; 377–392
  • Singh B. R. Critical aspects of bacterial protein toxins. “Natural Toxins II”, B. R. Singh, A. T. Tu. Plenum Press, New York 1996; 63–84
  • Pearce L. B., First E. R., Maccallum R. D., Gupta A. Pharmacologic characterization of botulinum toxin for basic science and medicine. Toxicon 1997; 35: 1373–1412
  • Singh B. R., Li B., Read D. Botulinum versus tetanus neurotoxins: why is botulinum neurotoxin but not tetanus neurotoxin a food poison?. Toxicon 1995; 33: 1541–1547
  • Weller U., Dauzenroth M-E, Meyer zu Heringdorf D, Habermann E. Chains and fragments of tetanus toxin. Separation, reassociation and pharmacological properties. Eur J Biochem 1989; 182: 649–656
  • Dolly J. O., de Paiva A, Poulain B., Foran P., Ashton A., Tauc L. Insights into the neuronal binding, uptake and intracellular activity of botulinum neurotoxins. “Bacterial Protein Toxins, Zbl Bakt Suppl 23”, Witholt, et al. Gustav Fischer, Stuttgart, Jena, New York 1992; 31–45
  • Bandyopadhyay S., Clark A. W., DasGupta B. R., Sathyamoorthy V. Role of the heavy and light chains of botulinum toxin in neuromuscular paralysis. J. Biol Chem 1987; 262: 2660–2663
  • Dolly J. O., Ashton A. C., Evans D. M., Richardson P. J., Black J. D., Melling J. Molecular action of botulinum neurotoxins: role of acceptors in targetting to cholinergic nerves and in the inhibition of the release of several transmitters. “Cellular and Molecular Basis of Cholinergic Function”, M. J. Dowdall. Ellis Howard, Chichester 1987; 517–533
  • Daniels-Holgate P U, Dolly J. O. Productive and non-productive binding of botulinum neurotoxin A to motor nerve endings are distinguished by its heavy chain. J Neurosci Res 1996; 44: 263–271
  • Pappenheimer A M, Jr. Diphtheria toxin. Annu Rev Biochem 1977; 46: 69–94
  • Middlebrook J. L. Cell surface receptors for protein toxins. “Botulinum Neurotoxin and Tetanus Toxin”, L. L. Simpson. Academic Press, New York 1989; 95–119
  • Dolly J. O., de Paiva A, Foran P., Lawrence G., Daniels-Holgate P, Ashton A. C. Probing the process of transmitter release with botulinum and tetanus neurotoxins. Sem Neurosci 1994; 6: 149–158
  • Foran P., Shone C. C., Dolly J. O. Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry 1994; 33: 15365–15374
  • Williamson L. C., Halpern J. L., Montecucco C., Brown J. E., Neale E. A. Clostridial neurotoxins and substrate proteolysis in intact neurons. Botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem 1996; 271: 7694–7699
  • Sadoul K., Halban P. A., Wollhem C. B., Catsicas S., Regazzi R., Weller U., Montecucco C., Lang J. SNAP-25 is expressed in islets of Langerhans and is involved in insulin release. J Cell Biol 1995; 128: 1019–1028
  • “therapy with Botulinum Toxin”, J. Jankovic, M. Hallett. Marcel Dekker, Inc., New York 1994
  • Heneson N. New clinical uses for botulinum toxin. ASM News 1991; 57: 63–64
  • Zhou L., de Paiva A, Liu D., Aoki R., Dolly J. O. Expression and purification of the light chain of botulinum neurotoxin A: a single mutation abolishes its cleavage of SNAP-25 and neurotoxicity after reconstitution with the heavy chain. Biochemistry 1995; 34: 15175–1518
  • Kasianowicz J. J., Brandin E., Branton D., Deamer D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 1996; 93: 13770–13773
  • Walker B., Kasianowicz J., Krishnasastry M., Bayley H. A pore-forming protein with a metal-actuated switch. Prot Eng 1994; 7: 655–662
  • Russo M. J., Bayley H., Toner M. Reversible permeabilization of plasma membranes with an engineered switchable pore. Nature Biotech 1997; 15: 278–282
  • Stevens R. C., Evenson M. L., Tepp W., DasGupta B. R. Crystallization and preliminary x-ray analysis of botulinum neurotoxin type A. J Mol Biol 1991; 222: 877–880
  • Lacey B., Cohen A., Steven R. C. The three dimensional X-ray crystal structure of botulinum neurotoxin serotype A. Abstract. “Second International Meeting on the Molecular Genetics and Pathogenesis of the Clostridia”, OnzainFrance, 1997; 37
  • Umland T. C., Wingert L. M., Swaminathan S., Furey W. F., Schmidt J. J., Sax M. The structure of the receptor binding fragment Hc of tetanus neurotoxin. Nature Struct Biol 1997a; 4: 788–792
  • Lebeda F. J., Olson M. A. Secondary structural predictions for the clostridial neurotoxins. Proteins: Struct Funct Gen 1994; 20: 293–300
  • Lebeda F. J., Olson M. A. Structural predictions of the channel-forming region of botulinum neurotoxin heavy chain. Toxicon 1995; 33: 559–567
  • Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 1993; 232: 584–599
  • Lebeda F. J., Umland T. C., Sax M., Olson M. A. Accuracy of secondary structure and solvent accessibility predictions for a clostridial neurotoxin C-fragment. J Prot Chem 1998; 17: 311–318
  • Lebeda F. J., Olson M. A. Predicting differential antigen-antibody contact regions based on solvent accessibility. J Prot Chem 1997; 16: 607–618
  • Singh B. R., Fuller M. P., Schiavo G. Molecular structure of tetanus neurotoxin as reveasled by Fourier transform infrared and circular dichroic spectroscopy. Biophys Chem 1990; 46: 155–166
  • Singh B. R., DasGupta B. R. Molecular topography and secondary structure comparisons of botulinum neurotoxin types A, B and E. Molec Cell Biochem 1989a; 86: 87–95
  • Singh B. R., DasGupta B. R. Changes in molecular topography of the light and heavy chains of type A botulinum neurotoxin following their separation. Biophys Chem 1989b; 34: 259–267
  • Singh B. R., DasGupta B. R. Conformational changes associated with the nicking and activation of botulinum neurotoxin type E. Biophys Chem 1990; 38: 123–130
  • Fu F-N, Busath D. N., Singh B. R. (submitted).: Spectroscopic analysis of low pH and lipid induced structural changes in type A botulinum neurotoxin relevant to membrane channel formation and translocation
  • Thompson D. E., Brehm J. K., Oultram J. D., Swinfield T. J., Shone C. C., Atkinson T., Mailing J., Minton N. P. The complete amino acid sequence of the Clostridium botulinum type A neurotoxin deduced by nucleotide sequence analysis of the endcoding gene. Eur J Biochem 1990; 189: 73–81
  • Be X., Fu F-N, Singh B. R. Hydrophobic moment analysis of amino acid sequences of botulinum and tetanus neurotoxins to identify functional domains. J Nat Toxins 1994; 3: 49–68
  • Lebeda F. J., Hack D. C., Gentry M. K. Theoretical analyses of the functional regions of the heavy chain of botulinum neurotoxin. “therapy with Botulinum Toxin”, J. Jankovic, M. Hallett. Marcel Dekker, Inc, New York 1994; 51–61
  • Hartmann H. A., Kirsch G. E., Drewe J. A., Taglialatela M., Joho R. H., Brown A. M. Exchange of conduction pathways between two related K+ channels. Science 1991; 251: 942–944
  • Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 1984; 179: 125–142
  • Lupas A. Coiled coils: new structures and functions. Trends in Biol Sci 1996; 21: 375–382
  • Wiley D. C., Skehel J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Ann Rev Biochem 1987; 56: 365–394
  • Montal M. S., Blewirt R., Tomich J. M., Montal M. Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett 1992; 313: 12–18
  • Oblatt-Montal M, Yamazaki M., Nelson R., Montal M. Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Prot Sci 1995; 4: 1490–1497
  • Creighton T. E. “Proteins: Structures and Molecular Properties”2nd ed. WH Freeman & Co., New York 1993
  • Hoch D. H., Romero-Mira M, Ehrlich B. E., Finkelstein A., DasGupta B. R., Simpson L. L. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci USA 1985; 82: 1692–1696
  • Beise J., Hahnen H., Andersen-Beckh B, Dreyer F. Pore formation by tetanus toxin, its chain and fragments in neuronal membranes and evaluation of the underlying motifs in the structure of the toxin molecule. Naunyn-Schmiedeberg's Arch Pharmacol 1994; 349: 66–73
  • Sheridan R. Gating and permeability of ion channels produced by botulinum toxin types A and E in PC12 cell membranes. Toxicon 1998, (in press)
  • Krouse M. E., Schneider G. T., Gage P. W. A large anion-selective channel has seven conductance levels. Nature 1986; 319: 58–60
  • Rauch G., Gambale F., Montal M. Tetanus toxin channel in phosphatidylserine planar bilayers: conductance states and pH dependence. Eur Biophys J 1990; 18: 79–83
  • Neale E. A., Williamson L. C. Effect monensin and bafilomycin Al on tetanus toxin intoxication of spinal cord cells. Zbl Bakt (suppl) 1994; 24: 410–411
  • Blaustein R. O., Germann W. J., Finkelstein A., DasGupta B. R. The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEES Lett 1987; 226: 115–120
  • Montecucco C., Schiavo G., DasGupta B. R. Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. Biochem J 1989; 259: 47–53
  • Merritt E. A., Hoi W GJ. AB5 toxins. Curr Opin Struct Biol 1995; 5: 165–171
  • Harshman S., Boquet P., Duflot E., Alouf J. E., Montecucco C., Papini E. Staphylococcal alpha-toxin: a study of membrane penetration and pore formation. J Biol Chem 1989; 264: 14978–1498
  • Bakás L, Ostolaza H., Vaz W LC, Goñi F M. Reversible adsorption and nonreversible insertion of Escherichia colt α-hemolysin into lipid bilayers. Biophys J 1996; 71: 1869–1876
  • Simpson L. L. Ammonium chloride and methylamine hydrochloride antagonize clostridial neurotoxins. J Pharmacol Exp ther 1983; 225: 546–552
  • Simpson L. L. Use of pharmacologic antagonists to deduce commonalities of biologic activity among clostridial neurotoxins. J Pharmacol Exp ther 1988; 245: 867–872
  • Adler M., Deshpande S. S., Sheridan R. E., Lebeda F. J. Evaluation of captopril and other potentially therapeutic compounds in antagonizing botulinum toxin-induced muscle paralysis. “therapy with Botulinum Toxin”, J. Jankovic, M. Hallett. Marcel Dekker, Inc. 1994; 63–70
  • Boquet P., Duflot E. Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proc Natl Acad Sci USA 1982; 79: 7614–7618
  • Shone C. C., Hambleton P., Melling J. A 50-kDa fragment from the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Eur J Biochem 1987; 167: 175–180
  • Donovan J. J., Middlebrook J. L. Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry 1986; 25: 2872–2876
  • Alving C. R., Iglewski B. H., Urban K. A., Moss J., Richards R. L., Sadoff J. C. Binding of diphtheria toxin to phospholipids in liposomes. Proc Natl Acad Sci 1980; 77: 1986–1990
  • Hoch D. H. Botulinum, tetanus, and diphtheria toxin channels in planar lipid bilayers. Doctoral Dissertation (Albert Einstein College of Medicine), UMI Dissertation Services, Ann Arbor, Michigan 1985
  • Gilson M. K., Honig B. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins: Struct Funct Gen 1988; 4: 7–18
  • Rogers R. K. The role of electrostatic interactions in the structure of globular proteins. “Prediction of Protein Structure and the Principles of Protein Conformation”, G. D. Fasman. Plenum Press, New York 1989; 359–389
  • Menestrina G., Forti S., Gambale F. Interaction of tetanus toxin with lipid vesicles: effect of pH, surface charge and transmembrane potential on the kinetics of channel formation. Biophys J 1989; 55: 393–405
  • Schmid M. F., Robinson J. P., DasGupta B. R. Direct visualization of botulinum neurotoxin-induced channels in phospholipid vesicles. Nature 1993; 254: 827–830
  • Ledoux D. N., Be X., Singh B. R. Quarternary strucuture of botulinum and tetanus neurotoxins as probed by chemical cross-linking and native gel electrophoresis. Toxicon 1994; 32: 1095–1104
  • Oiki S., Madison V., Montal M. Bundles of amphipathic transmembrane α-helices as a structural motif for ion-conducting channel proteins: studies on sodium channels and acetylcholine receptors. Proteins: Struct Funct Gen 1990; 8: 226–236
  • Song L., Hobaugh M. R., Shustak C., Cheley S., Bayley H., Gouaux J. E. Structure of staphylococcal a-hemolysin, a heptameric transmembrane pore. Science 1996; 274: 1859–1866
  • Schwarz G., Stankowski S., Rizzo V. Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin. Biochim Biophys Acta 1986; 861: 141–151
  • Rizzo V., Stankowski S., Schwarz G. Alamethicin incorporation in lipid bilayers: a thermodynamic study. Biochemistry 1987; 26: 2751–2759
  • Gouaux J. E., Braha O., Hobaugh M. R., Song L., Cheley S., Shustak C., Bayley H. Subunit stoichiometry of staphylococcal a-hemolysin in crystals and on membranes: a heptameric transmembrane pore. Proc Natl Acad Sci USA 1994; 91: 12828–12831
  • Huynh P. D., Cui C., Zhan H., Oh K. J., Collier R. J., Finkelstein A. Probing the structure of diphtheria toxin channel. Reactivity in lipid bilayer membranes of cysteine-substituted mutant channels with methanethiosulfonate derivatives. J Gen Physiol 1997; 110: 229–242
  • Samson M SP. The biophysics of peptide models of ion channels. Prog Biophys Molec Biol 1991; 55: 139–235
  • Marsh D. Peptide models for membrane channels. Biochem J 1996; 315: 345–361
  • Bell C. E., Poon P. H., Schumaker V. N., Eisenberg D. Oligomerization of a 45 kilodalton fragment of diphtheria toxin at pH 5.0 to a molecule of 20–24 subunits. Biochemistry 1997; 36: 15201–15207
  • Hudson T. H., Neville D M, Jr. Transmembrane transport of diphtheria toxin, related toxins, and colicins. Ann Rev Biochem 1986; 55: 195–224
  • Hudson T H, Neville D M, Jr. Temporal separation of protein toxin translocation from processing events. J Biol Chem 1987; 262: 16484–16494
  • Shiver J W, Donovan J J. Interactions of diphtheria toxin with lipid vesicles: determinants of ion channel formation. Biochim Biophys Acta 1987; 903: 48–55
  • Ben-Tai N, Honig B., Peitzsch R. M., Denisov G., McLaughlin S. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophys J 1996; 71: 561–575
  • Ben-Tai N, Ben-Shaul A, Nicholls A., Honig B. Free-energy determinants of α-helix insertion into lipid bilayers. Biophys J 1996; 70: 1803–1812
  • Schiavo G., Papini E., Genna G., Montecucco C. An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect Immun 1990; 58: 4136–4141
  • Kamata Y., Kozaki S. The light chain of botulinum neurotoxin forms channels in a lipid membrane. Biochem Biophys Res Comm 1994; 205: 751–757
  • Jiang J X, Chung L A, London E. Self-translocation of diphtheria toxin across model membranes. J Biol Chem 1991; 266: 24003–24001
  • Jiang G-S, Solow R, Hu V W. Fragment A of diphtheria toxin causes pH-dependent lesions in model membranes. J Biol Chem 1989; 264: 17170–17173
  • Papini E, Rappuoli R, Murgia M, Montecucco C. Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. J Biol Chem 1993 1993; 268: 1567–1574
  • Ashton A C, de Paiva A M, Poulain B., Tauc L., Dolly J. O. Factors underlying the characteristic inhibition of the neuronal release of transmitters by tetanus and various botulinum toxins. “Botulinum and Tetanus Neurotoxins: Neurotransmission and Biomedical Aspects”, D A DasGupta. Plenum Press, New York 1993; 191–213
  • De Paiva A, Poulain B., Lawrence G. W., Shone C. C., Tauc L., Dolly J. O. A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. J Biol Chem 1993; 268: 20838–20844
  • Wright H T, Marston A W, Goldstein D J. A functional role for cysteine disulfides in the transmembrane transport of diphtheria toxin. J Biol Chem 1984; 259: 1649–1654
  • Zalman L S, Wisneiski B J. Mechanism of insertion of diphtheria toxin: peptide entry and pore size determination. Proc Natl Acad Scl USA 1984; 81: 3341–3345
  • Papini E., Schiavo G., Tomasi M., Colombatti M., Rappuoli R., Montecucco C. Lipid interaction of diphtheria toxin and mutants with altered fragment B: hydrophobic photolabelling and cell intoxication. Eur J Biochem 1987; 169: 637–644
  • Finkeistein A. Channels formed in phospholipid bilayer membranes by diphtheria, botulinum and anthrax toxin. J Physiol (Paris) 1990; 84: 188–190
  • Gambale F., Montal M. Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Biophys J 1988; 53: 71–783
  • Korchev Y E, Bashford C L, Alder G M, Apel P Y, Edmonds D T, Lev A A, Nandi K, Zima A V, Pasternak C A. A novel explanation for fluctuations in ionic current through narrow pores. FASEB J 1997; 11: 600–608
  • Bittner M A, Habig W H, Holz R W. isolated light chain of tetanus toxin inhibits exocytosis: Studies in digitonin permeabilized cells. J Neurochem 1989; 53: 966–968
  • Lomneth R., Martin T FJ, DasGupta B. R. Botulinum neurotoxin light chain inhibits norepinephrine secretion in PC12 cells at an intracellular membranous or cytoskeltal site. J Neurochem 1991; 57: 1413–1421
  • Maisey E A, Wadsworth J DF, Poulain B., Shone C. C., Melling J., Gibbs P., Tauc L., Dolly J. O. Involvement of constituent chains of botulinum neurotoxins A and B in the blockade of neurotransmitter release. Eur J Biochem 1988; 177: 683–691
  • Poulain B., Mochida S., Wadsworth J DF, Weller U., Habermann E., Dolly J. O., Tauc L. Inhibition of neurotransmitter release by botulinum neurotoxins and tetanus toxin at Aptysia synapses: role of the constituent chains. J Physiol Paris 1990; 84: 247–261
  • Poulain B., Mochida S., Weller U., Högy B, Habermann E., Wadsworth J DF, Shone C. C., Dolly J. O., Tauc L. Heterologous combinations of heavy and light chains from botulinum neurotoxin A and tetanus toxin inhibit neurotransmitter release in Aptysia. J Biol Chem 1990; 266: 9580–9585
  • Sathyamoorthy V., DasGupta B. R. Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B and E. J Biol Chem 1985; 260: 10461–10466
  • Boquet P., Silvermann M. S., Pappenheimer A M, Jr. Binding of triton X-100 to diphtheria toxin, crossreacting material 45, and their fragments. Proc Natl Acad Sci USA 1976; 73: 4449–4453
  • Simon S M, Blobel G. A protein-conducting channel in the endoplasmic reticulum. Cell 1991; 65: 371–380
  • Zhao J., Milne J. C., Collier R. J. Effect of anthrax toxin's lethal factor on ion channels formed by the protective antigen. J Biol Chem 1995; 270: 18626–18630
  • Blaustein R O, Finkelstein A. Voltage-dependent block of anthrax toxin channels in planar phospholipid bilayer membranes by symmetric tetraalkylammonium ions. J Gen Physiol 1990; 96: 905–919
  • Sheridan R E, Deshpande S S, Nicholson J D, Adler M. Structural features of aminoquinolines necessary for antagonist activity against botulinum neurotoxin. Toxicon 1997; 35: 1439–1451
  • Parikh S N, Singh B R. Comparative membrane channel activities of botulinum neurotoxin type A and E: estimation of their membrane channel size. Prot Sci 1997; 6(supp 2)111, abstr. 333
  • Montecucco C., Schiavo G., Gao Z., Blaustein R., Boquet P., DasGupta B. R. Interaction of botulinum and tetanus toxins with lipid bilayer surface. Biochem J 1988; 251: 379–383
  • Högy B, Dauzenroth M-E, Hudel M., Welter U., Habermann E. Increase of permeability of synaptosomes and liposomes by the heavy chain of tetanus toxin. Toxicon 1992; 30: 63–76
  • Misler S. Diphtheria toxin fragment channels in lipid bilayer membranes: Selective sieves or discarded wrappers?. Biophys J 1984; 45: 107–109
  • Hu V W, Holmes R K. Evidence for direct insertion of fragments A and B of diphtheria toxin into model membranes. J Biol Chem 1984; 259: 12226–12233

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.