41
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Inner ear connexins, intercellular signalling and deafness

&
Pages 50-55 | Accepted 12 Oct 2009, Published online: 09 Dec 2009

References

  • Krstic RV. Human Microscopic Anatomy. Berlin:Springer-Verlag; 1997.
  • Cohen-Salmon M, del Castillo FJ, Petit C. Connexins responsible for hereditary deafness: the tale unfolds. Winterhager E, Gap Junctions in Development and Disease. Berlin: Springer-Verlag; 2005. 111–34.
  • Kikuchi T, Adams JC, Miyabe Y, So E, Kobayashi T. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc. 2000;33:51–6.
  • Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. J Comp Neurol. 2003;467:207–31.
  • Zhao HB, Kikuchi T, Ngezahayo A, White TW. Gap junctions and cochlear homeostasis. J Membr Biol. 2006;209:177–86.
  • Kumar NM, Gilula NB. The gap junction communication channel. Cell. 1996;84: 381–8.
  • Harris AL. Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol. 2007;94:120–43.
  • Hernandez VH, Bortolozzi M, Pertegato V, Beltramello M, Giarin M, Zaccolo M, . Unitary permeability of gap junction channels to second messengers measured by FRET microscopy. Nat Methods. 2007;4:353–8.
  • Eatock RA, Hurley KM. Functional development of hair cells. Curr Top Dev Biol. 2003;57:389–448.
  • Jagger DJ, Forge A. Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea. J Neurosci. 2006;26:1260–8.
  • Fettiplace R, Ricci AJ. Mechanoelectrical transduction in auditory hair cells. Eatock RA, Fay RR, Popper AN, Vertebrate Hair Cells. New York: Springer Science Inc. 2006. Vol 27: 154–203.
  • Rio C, Dikkes P, Liberman MC, Corfas G. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J Comp Neurol. 2002;442:156–62.
  • Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. Deafness and renal tubular acidosis in mice lacking the K-Cl cotransporter Kcc4. Nature. 2002; 416:874–8.
  • Huang D, Chen P, Chen S, Nagura M, Lim DJ, Lin X. Expression patterns of aquaporins in the inner ear: evidence for concerted actions of multiple types of aquaporins to facilitate water transport in the cochlea. Hear Res. 2002;165:85–95.
  • Nickel R, Forge A. Gap junctions and connexins in the inner ear: their roles in homeostasis and deafness. Curr Opin Otolaryngol Head Neck Surg. 2008;16:452–7.
  • Yum SW, Zhang J, Valiunas V, Kanaporis G, Brink PR, White TW, . Human connexin 26 and connexin 30 form functional heteromeric and heterotypic channels. Am J Physiol Cell Physiol. 2007;293:1032–48.
  • Sabag AD, Dagan O, Avraham KB. Connexins in hearing loss: a comprehensive overview. J Basic Clin Physiol Pharmacol. 2005;16:101–16.
  • Lautermann J, Frank HG, Jahnke K, Traub O, Winterhager E. Developmental expression patterns of connexin 26 and 30 in the rat cochlea. Dev Genet. 1999; 25:306–11.
  • Xia A, Katori Y, Oshima T, Watanabe K, Kikuchi T, Ikeda K. Expression of connexin 30 in the developing mouse cochlea. Brain Res. 2001;898:364–7.
  • Levin M. Gap junctional communication in morphogenesis. Prog Biophys Mol Biol. 2007;94:186–206.
  • Kikuchi T, Kimura RS, Paul DL, Adams JC. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl). 1995; 191:101–18.
  • Lautermann J, ten Cate WJ, Altenhoff P, Grummer R, Traub O, Frank H, . Expression of the gap junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res. 1998;294:415–20.
  • Marziano NK, Casalotti SO, Portelli AE, Becker DL, Forge A. Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Hum Mol Genet. 2003;12;805–12.
  • Ahmad S, Chen S, Sun J, Lin X. Connexins 26 and 30 are coassembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun. 2003;307: 362–8.
  • Zhao HB, Yu N. Distinct and gradient distributions of connexin 26 and connexin 30 in the cochlear sensory epithelium of guinea pigs. J Comp Neurol. 2006;499:506–18.
  • Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, . Targeted ablation of connexin 26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol. 2002;12:1106–11.
  • Mikaelian D, Alford BR, Ruben RJ. Cochlear potentials and VIIIth nerve action potentials in normal and genetically deaf mice. Ann Otol Rhinol Laryngol. 1965;74:146–57.
  • Kudo T, Kure S, Ikeda K, Xia AP, Katori Y, Suzuki M, . Transgenic expression of a dominant-negative connexin 26 causes degeneration of the organ of Corti and non-syndromic deafness. Hum Mol Genet. 2003;12:995–1004.
  • Sun Y, Tang W, Chang Q, Wang Y, Kong W, Lin X. Connexin 30 null and conditional connexin 26 null mice display distinct pattern and time-course of cellular degeneration in the cochlea. J Comp Neurol. 2009;516:569–79.
  • Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G, . Connexin 30 (GJB6) deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet. 2003;12:13–21.
  • Ahmad S, Tang W, Chang Q, Qu Y, Hibshman J, Li Y, . Restoration of connexin 26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin 30-linked deafness. Proc Natl Acad Sci U S A.2007;104:1337–41.
  • Cohen-Salmon M, Regnault B, Cayet N, Caille D, Demuth K, Hardelin JP, . Connexin 30 deficiency causes instras-trial fluid-blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci U S A. 2007;104:6229–34.
  • Kelley PM, Harris DJ, Comer BC, Askew JW, Fowler T, Smith SD, . Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet. 1998;62:792–9.
  • Bruzzone R, Veronesi V, Gomes D, Bicego M, Duval N, Marlin S, . Loss of function and residual channel activity of connexin 26 mutations associated with non-syndromic deafness. FEBS Lett. 2003;533:79–88.
  • Beltramello M, Piazza V, Bukauskas FF, Pozzan T, Mammano F. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol. 2005;7:63–9.
  • Mese G, Richard G, White TW. Gap junctions: basic structure and function. J Invest Dermatol. 2007;127:2516–24.
  • Nicholson SM, Bruzzone R. Gap junctions: getting the message through. Curr Biol. 1997;7:R340–4.
  • Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, . Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature. 2009;458:597–602.
  • Zhao HB, Yu N, Fleming CR. Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci U S A. 2005;102:18724–9.
  • Bennett MV, Contreras JE, Bukauskas FF, Saez JC. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 2003;26:610–7.
  • Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol. 2003;4:285–94.
  • Clair C, Combettes L, Pierre F, Sansonetti P, Tran Van Nhieu G. Extracellular-loop peptide antibodies reveal a predominant hemichannel organization of connexins in polarized intestinal cells. Exp Cell Res. 2008;314:1250–65.
  • Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, . ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci U S A. 2008;105:18770–5.
  • Munoz DJ, Kendrick IS, Rassam M, Thorne PR. Vesicular storage of adenosine triphosphate in the guinea pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia. Acta Otolaryngol. 2001;121:10–5.
  • Gale JE, Piazza V, Ciubotaru CD, Mammano F. A mechanism for sensing noise damage in the inner ear. Curr Biol. 2004;14:526–9.
  • Piazza V, Ciubotaru CD, Gale JE, Mammano F. Purinergic signalling and intercellular Ca2+ wave propagation in the organ of Corti. Cell Calcium. 2007;41:77–86.
  • Mann ZF, Duchen MR, Gale JE. Mitochondria modulate the spatio-temporal properties of intra- and inter-cellular Ca2+ signals in cochlear supporting cells. Cell Calcium. 2009;46:136–46.
  • Housley GD, Jagger DJ, Greenwood D, Raybould NP, Salih SG, Jarlebark LE, . Purinergic regulation of sound transduction and auditory neurotransmission. Audiol Neurootol. 2002;7:55–61.
  • Vlajkovic SM, Housley GD, Munoz DJ, Robson SC, Sevigny J, Wang CJ, . Noise exposure induces up-regulation of ectonucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea. Neuroscience. 2004;126:763–73.
  • Mammano F, Frolenkov GI, Lagostena L, Belyantseva IA, Kurc M, Dodane V, . ATP-induced Ca2+ release in cochlear outer hair cells: localization of an inositol triphosphate-gated Ca2+ store to the base of the sensory hair bundle. J Neurosci. 1999;19:6918–29.
  • Lagostena L, Mammano F. Intracellular calcium dynamics and membrane conductance changes evoked by Deiters' cell purinoceptor activation in the organ of Corti. Cell Calcium. 2001;29:191–8.
  • Lagostena L, Ashmore JF, Kachar B, Mammano F. Purinergic control of intercellular communication between Hensen's cells of the guinea pig cochlea. J Physiol. 2001;531:693–706.
  • Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998;392:933–6.
  • Hu Q, Deshpande S, Irani K, Ziegelstein RC. [Ca2+](i) oscillation frequency regulates agonist-stimulated NF-kappaB transcriptional activity. J Biol Chem. 1999;274:33995–8.
  • Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, . Oscillations in NF-kappaB signalling control the dynamics of gene expression. Science. 2004;306:704–8.
  • Ortolano S, di Pasquale G, Crispino G, Anselmi F, Mammano F, Chiorini JA. Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear. Proc Natl Acad Sci U S A. 2008;105:18776–81.
  • Hennemann H, Kozjek G, Dahl E, Nicholson B, Willecke K. Molecular cloning of mouse connexins 26 and 32: similar genomic organization but distinct promoter sequences of two gap junction genes. Eur J Cell Biol. 1992;58:81–9.
  • Tu ZJ, Kiang DT. Mapping and characterization of the basal promoter of the human connexin 26 gene. Biochim Biophys Acta. 1998;1443:169–81.
  • Zhao Y, Rivieccio MA, Lutz S, Scemes E, Brosnan CF. The TLR3 ligand polyI: C down-regulates connexin 43 expression and function in astrocytes by a mechanism involving the NF-kappaB and PI3 kinase pathways. Glia. 2006;54:775–85.
  • Wilch E, Zhu M, Burkhart KB, Regier M, Elfenbein JL, Fisher RA, . Expression of GJB2 and GJB6 is reduced in a novel DFNB1 allele. Am J Hum Genet. 2006;79:174–9.
  • del Castillo FJ, Rodriguez-Ballesteros M, Alvarez A, Hutchin T, Leonardi E, de Oliveira CA, . A novel deletion involving the connexin 30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin 26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet. 2005;42:588–94.
  • del Castillo I, Moreno-Pelayo MA, del Castillo FJ, Brown-stein Z, Marlin S, Adina Q, . Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing impaired subjects: a multicentre study. Am J Hum Genet. 2003;73:1452–8.
  • del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D, . A deletion involving the connexin 30 gene in non-syndromic hearing impairment. N Engl J Med. 2002;346:243–9.
  • Rodriguez-Paris J, Schrijver I. The digenic hypothesis unravelled: the GJB6 del(GJB6-D13S1830) mutation causes allele-specific loss of GJB2 expression in cis. Biochem Biophys Res Commun. 2009;389:354–9.
  • Kelly MC, Chen P. Development of form and function in the mammalian cochlea. Curr Opin Neurobiol. 2009;19: 395–401.
  • Housley GD, Marcotti W, Navaratnam D, Yamoah EN. Hair cells: beyond the transducer. J Membr Biol. 2006;209: 89–118.
  • Mammano F, Bortolozzi M, Ortolano S, Anselmi F. Ca2+ signalling in the inner ear. Physiology (Bethesda). 2007;22:131–44.
  • Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE. The origin of spontaneous activity in the developing auditory system. Nature. 2007;450:50–5.
  • Glowatzki E, Grant L, Fuchs P. Hair cell afferent synapses. Curr Opin Neurobiol. 2008;18:389–95.
  • Meyer AC, Frank T, Khimich D, Hoch G, Riedel D, Chapochnikov NM, . Tuning of synapse number, structure and function in the cochlea. Nat Neurosci. 2009;12:444–53.
  • Goutman JD, Glowatzki E. Time-course and calcium dependence of transmitter release at a single ribbon synapse. Proc Natl Acad Sci U S A. 2007;104:16341–6.
  • Knirsch M, Brandt N, Braig C, Kuhn S, Hirt B, Munkner S, . Persistence of Ca(v)1.3 Ca2+ channels in mature outer hair cells support outer hair cell afferent signalling. J Neurosci. 2007;27:6442–51.
  • Lahne M, Gale JE. Damage induced activation of ERK1/2 in cochlear supporting cells is a hair cell death-promoting signal that depends on extracellular ATP and calcium. J Neurosci. 2008;28:4918–28.
  • Rozental R, Miduturu S, Spray DC. How to close a gap junction channel. Bruzzone R, Giaume C, Connexin Methods and Protocols. Totowa, NJ: Humana Press; 2001. 447–76.
  • Levesque SA, Lavoie EG, Lecka J, Bigonnesse F, Sevigny J. Specificity of the ecto-ATPase inhibitor ARL 67156 on human and mouse ectonucleotidases. Br J Pharmacol. 2007;152:141–50.
  • Komoszynski MA. Comparative studies on animal and plant apyrases (ATP diphosphohydrolase EC 3.6.1.5) with application of immunological techniques and various ATPase inhibitors. Comp Biochem Physiol B Biochem Mol Biol. 1996;113:581–91.
  • Molnar J, Lorand L. Studies on apyrases. Arch Biochem Biophys. 1961;93:353–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.