42
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Functional dissection of auditory cortex with magnetic resonance imaging

, , &
Pages 88-99 | Published online: 20 May 2010

References

  • Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:9868–72.
  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskopf RM, Boncelet BP, . Dynamic magnetic resonance imaging of human brain activation activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992;89:5675–9.
  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS. Time-course EPI of human brain function during task activation. Magn Reson Med. 1992;25:390–7.
  • Campain R, Minckler J. A note on the gross configurations of the human auditory cortex. Brain Lang. 1976;3:318–23.
  • Talairach P, Tournoux J. A stereotactic coplanar atlas of the human brain. Stuttgart: Thieme; 1988.
  • Villringer A, Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev. 1995;7:240–76.
  • Grimm C, Schreiber M, Kristeva-Feige R, Mergner T, Hennig J, Lucking CH. A comparison between electric source localization and fMRI during somatosensory stimulation. Electroencephalogr Clin Neurophysiol. 1998;106:22–9.
  • Linden DE, Prvulovic D, Formisano E, Vollinger M, Zanella FE, Goebel R, . The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. Cereb Cortex. 1999;9:815–23.
  • Kim DS, Duong TQ, Kim SG. High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci. 2000;3:164–9.
  • Saldana E, Merchan MA. Intrinsic and commissural connections of the rat inferior colliculus. J Comp Neurol. 1992;319:417–37.
  • Glendenning KK, Brunso-Bechtold JK, Thompson GC, Masterton RB. Ascending auditory afferents to the nuclei of the lateral lemniscus. J Comp Neurol. 1981;197:673–703.
  • Pandya DN, Rosene DL, Doolittle AM. Corticothalamic connections of auditory-related areas of the temporal lobe in the rhesus monkey. J Comp Neurol. 1994;345:447–71.
  • Duvernoy HM. Three-dimensional sectional anatomy with MRI and blood supply. New York: Springer-Verlag; 1999.
  • Saleem KS, Suzuki W, Tanaka K, Hashikawa T. Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey. J Neurosci. 2000;20:5083–101.
  • Minckler J. Introduction to neuroscience. St. Louis: Mosby; 1972.
  • Merzenich MM, Brugge JF. Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res. 1973;50:275–96.
  • Morel A, Garraghty PE, Kaas JH. Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol. 1993;335:437–59.
  • Kaas JH, Hackett TA. Subdivisions of auditory cortex and levels of processing in primates. Audiol Neurootol. 1998;3:73–85.
  • Kaas JH, Hackett TA, Tramo MJ. Auditory processing in primate cerebral cortex. Curr Opin Neurobiol. 1999;9:164–70.
  • Galaburda A, Sanides F. Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol. 1980;190: 597–610.
  • Rauschecker JP, Tian B, Hauser M. Processing of complex sounds in the macaque non-primary auditory cortex. Science. 1995;268:111–4.
  • Rauschecker JP. Cortical processing of complex sounds. Curr Opin Neurobiol. 1998;8:516–21.
  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci. 1999;2:1131–6.
  • Bushara KO, Weeks RA, Ishii K, Catalan MJ, Tian B, Rauschecker JP, . Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nat Neurosci. 1999;2:759–66.
  • Hedeen RA, Edelstein WA. Characterization and prediction of gradient acoustic noise in MR imagers. Magn Reson Med. 1997;37:7–10.
  • Ulmer JL, Biswal BB, Yetkin FZ, Mark LP, Mathews VP, Prost RW, . Cortical activation response to acoustic echo planar scanner noise. J Comput Assist Tomogr. 1998;22:111–9.
  • Bandettini PA, Jesmanowicz A, van Kylen J, Birn RM, Hyde JS. Functional MRI of brain activation induced by scanner acoustic noise. Magn Reson Med. 1998;39:410–6.
  • Hall DA, Summerfield AQ, Goncalves MS, Foster JR, Palmer AR, Bowtell RW. Time-course of the auditory BOLD response to scanner noise. Magn Reson Med. 2000;43:601–6.
  • Ulmer JL, Biswal BB, Mark LP, Mathews VP, Prost RW, Millen SJ, . Acoustic echoplanar scanner noise and pure tone hearing thresholds: the effects of sequence repetition times and acoustic noise rates. J Comput Assist Tomogr. 1998;22:480–6.
  • Shah NJ, Jancke L, Grosse-Ruyken ML, Muller-Gartner HW. Influence of acoustic masking noise in fMRI of the auditory cortex during phonetic discrimination. J Magn Reson Imaging. 1999;9:19–25.
  • Scheich H, Baumgart F, Gaschler-Markefski B, Tegeler C, Tempelmann C, Heinze HJ, . Functional magnetic resonance imaging of a human auditory cortex area involved in foreground-background decomposition. Eur J Neurosci. 1998;10:803–9.
  • Friston KJ, Price CJ, Fletcher P, Moore C, Frackowiak RSJ, Dolan R J. The trouble with cognitive subtraction. Neuroimage. 1996;4:97–104.
  • Hennel F, Girard F, Loenneker T. ‘Silent’ MRI with soft gradient pulses. Magn Reson Med. 1999;42:6–10.
  • Hennig J, Hodapp M. Burst imaging. MAGMA. 1993;1: 39–48.
  • Jakob PM, Schlaug G, Griswold M, Lovblad KO, Thomas R, Ives JR, . Functional burst imaging. Magn Reson Med. 1998;40:614–21.
  • Chen CK, Chiueh TD, Chen JH. Active cancellation system of acoustic noise in MR imaging. IEEE Trans Biomed Eng. 1999;46:186–91.
  • Ravicz ME, Melcher JR, Kiang NY. Acoustic noise during functional magnetic resonance imaging. J Acoust Soc Am. 2000;108:1683–96.
  • Cohen MS. Parametric analysis of fMRI data using linear systems methods. Neuroimage. 1997;6:93–103.
  • Scheffler K, Seifritz E, Haselhorst R, Bilecen D. Titration of the BOLD effect. Separation and quantitation of blood volume and oxygenation changes in the human cerebral cortex during neuronal activation and ferumoxide infusion. Magn Reson Med. 1999;42:829–36.
  • Scheffler K, Bilecen D, Schmid N, Tschopp K, Seelig J. Auditory cortical responses in hearing subjects and unilaterally deaf patients as detected by functional magnetic resonance imaging. Cereb Cortex. 1998;8:156–63.
  • Bilecen D, Radu EW, Scheffler K. The MR tomograph as a sound generator. fMRI tool for the investigation of the auditory cortex. Magn Reson Med. 1998;40:934–7.
  • Bilecen D, Scheffler K, Schmid N, Tschopp K, Seelig J. Cerebral compensation mechanism of the auditive system detected by fMRI (Abstract). Proc ISMRM, Vol. 1. New York, 1996. 1841.
  • Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM. Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapping. 1999;7:89–97.
  • Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, . ‘Sparse’ temporal sampling in auditory fMRI. Hum Brain Mapping. 1999;7:213–23.
  • Robson MD, Dorosz JL, Gore JC. Measurements of the temporal fMRI response of the human auditory cortex to trains of tones. Neuroimage. 1998;7:185–98.
  • Belin P, Zatorre RJ, Hoge R, Evans AC, Pike B. Event-related fMRI of the auditory cortex. Neuroimage. 1999;10:417–29.
  • Di Salle F, Formisano E, Seifritz E, Linden DEJ, Scheffler K, Saulino C, . Functional fields in human auditory cortex revealed by time resolved fMRI without interference of EPI noise. Neuroimage. 2001;13:328–38.
  • Eden GF, Joseph JE, Brown HE, Brown CP, Zeffiro TA. Utilizing haemodynamic delay and dispersion to detect fMRI signal change without auditory interference: the behaviour-interleaved gradients technique. Magn Reson Med. 1999;41:13–20.
  • Hennel F, Bolo N, Namer I, Nedelec JF, Macher JP. Direct measurement of BOLD response to the acoustic noise of EPI gradients (Abstract). Proc ESMRM B, Vol. 1. Geneva, 1998. 218.
  • Binder JR, Rao SM, Hammeke TA, Yetkin FZ, Jesmanowicz A, Bandettini PA, . Functional magnetic resonance imaging of human auditory cortex. Ann Neurol. 1994;35:662–72.
  • Jancke L, Shah NJ, Posse S, Grosse-Ryuken M, Muller-Gartner HW. Intensity coding of auditory stimuli: an fMRI study. Neuropsychologia. 1998;36:875–83.
  • Pugh KR, Offywitz BA, Shaywitz SE, Fulbright RK, Byrd D, Skudlarski P, . Auditory selective attention: an fMRI investigation. Neuroimage. 1996;4:159–73.
  • Binder JR, Rao SM, Hammeke TA, Frost JA, Bandettini PA, Hyde JS. Effects of stimulus rate on signal response during functional magnetic resonance imaging of auditory cortex. Brain Res Cogn Brain Res. 1994;2:31–8.
  • Tanaka H, Fujita N, Watanabe Y, Hirabuki N, Takanashi M, Oshiro Y, . Effects of stimulus rate on the auditory cortex using fMRI with ‘sparse’ temporal sampling. Neuroreport. 2000;11:2045–9.
  • Melcher JR, Sigalovsky IS, Guinan JJ, Levine RA. Lateralized tinnitus studied with functional magnetic resonance imaging. Abnormal inferior colliculus activation. J Neurophysiol. 2000;83:1058–72.
  • Loveless N, Vasama J, Ma¨kela¨ J, Hari R. Human auditory cortical mechanisms of sound lateralization: IIIMonaural and binaural shift responses. Hear Res. 1994;81:91–9.
  • Konishi M, Takahashi TT, Wagner H, Sullivan WE, Sullivan WE, Carr CE. Neurophysiological and anatomical substrates of sound localization in the owl. Edelman GM, Gall WE, Cowan WM. Auditory function: neurobiological bases of hearing. New York: Wiley; 1988. 721–45.
  • Guimaraes AR, Melcher JP, Talavage TM, Baker JR, Ledden P, Rosen BR, . Imaging subcortical auditory activity in humans. Hum Brain Mapping. 1998;6:33–41.
  • Naatanen R. Mismatch negativity: clinical research and possible applications. Int J Psychophysiol. 2003;48:179–88.
  • Mustovic H, Scheffler K, Di Salle F, Esposito F, Neuhoff JG, Hennig J, . Temporal integration auditory events in human planum temporale probed by silent period in sound pattern. Neuroimage. 2003;20:429–34.
  • Merzenich MM, Knight PL, Roth GL. Representation of cochlea within primary auditory cortex in the cat. J Neurophysiol. 1975;38:231–49.
  • Romani GL, Williamson SJ, Kaufman L. Tonotopic organization of the human auditory cortex. Science. 1982;216: s1339–40.
  • Verkindt C, Bertrand O, Perrin F, Echallier JF, Pernier J. Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis. Electroencephalogr Clin Neurophysiol.1995;96:143–56.
  • Pantev C, Bertrand O, Eulitz C, Verkindt C, Hampson S, Schuierer G, . Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol. 1995;94:26–40.
  • Arlinger S, Elberling C, Bak C, Kofoed B, Lebech J, Saermark K. Cortical magnetic fields evoked by frequency glides of a continuous tone. Electroencephalogr Clin Neurophysiol. 1982;54:642–53.
  • Tuomisto T, Hari R, Katila R, Poutanen T, Varpula T. Studies of auditory evoked magnetic and electric responses: modality specificity and modelling. Nuovo Cimento. 1983;2D:471–83.
  • Pantev C, Hoke M, Lehnertz K, Lutkenhoner B, Anogianakis G, Wittkowski W. Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol. 1988;69:160–70.
  • Elberling C, Bak C, Kofoed B, Lebech J, Saermark K. Auditory magnetic fields: source location and ‘tonotopical organization’ in the right hemisphere of the human brain. Scand Audiol. 1982;11:61–5.
  • Tiitinen H, Alho K, Huotilainen M, Ilmoniemi RJ, Simola J, Naatanen R. Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiology. 1993;30:537–40.
  • Yamamoto T, Uemura T, Llinas R. Tonotopic organization of human auditory cortex revealed by multi-channel SQUID system. Acta Otolaryngol. 1992;112:201–4.
  • Yamamoto T, Williamson SJ, Kaufman L, Nicholson C, Llinas R. Magnetic localization of neuronal activity in the human brain. Proc Natl Acad Sci U S A. 1988;85:8732–6.
  • Bertrand O, Perrin F, Pernier J. Evidence for a tonotopic organization of the auditory cortex observed with auditory evoked potentials. Acta Otolaryngol Suppl. 1991;491:116–23.
  • Howard MA, Volkov IO, Abbas PJ, Damasio H, Ollendieck MC, Granner MA. A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Res. 1996;724:260–4.
  • Muhlnickel W, Elbert T, Taub E, Flor H. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci U S A. 1998; 95:10340–3.
  • Lauter JL, Herscovitch P, Formby C, Raichle ME. Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res. 1985;20:199–205.
  • Bilecen D, Scheffler K, Schmid N, Tschopp K, Seelig J. Tonotopic organization of the human auditory cortex as detected by BOLD fMRI. Hear Res. 1998;126:19–27.
  • Wessinger CM, Buonocore MH, Kussmaul CL, Mangun GR. Tonotopy in human auditory cortex examined with functional magnetic resonance imaging. Hum Brain Mapping. 1997;5:18–25.
  • Lantos G, Liu G, Shafer V, Knuth K, Vaughan H. Tonotopic organization of primary auditory cortex: an fMRI study (Abstract). Neuroimage. 1997;5:S174.
  • Strainer JC, Ulmer JL, Yetkin FZ, Haughton VM, Daniels DL, Millen SJ. Functional MR of the primary auditory cortex: an analysis of pure tone activation and tone discrimination. AJNR Am J Neuroradiol. 1997;18:601–10.
  • Talavage RM, Ledden PJ, Sereno MI, Rosen BR, Dale AM. Multiple phase-encoded tonotopic maps in human auditory cortex (Abstract). Neuroimage. 1997;5:S8.
  • Talavage RM, Benson RR, Galaburda AM, Rosen BR. Evidence of multiple tonotopic fields in human auditory cortex (Abstract). Proc ISMRM. 1996;4:1842.
  • Yang Y, Engelien A, Engelien W, Xu S, Stern E, Silbersweig DA. A silent event-related functional MRI technique for brain activation studies without interference of scanner acoustic noise. Magn Reson Med. 2000;43:185–90.
  • Engelien A, Yang Y, Engelien W, Zonana J, Stern E, Silbersweig DA. Physiological mapping of human auditory cortices with a silent event-related fMRI technique. Neuroimage. 2002;16:944–53.
  • Griffiths TD. Human complex sound analysis. Clin Sci (Colch).1999;96:231–4.
  • Griffiths TD, Rees A, Witton C, Shakir RA, Henning GB, Green GG. Evidence for a sound movement area in the human cerebral cortex. Nature. 1996;383:425–7.
  • Pavani F, Macaluso E, Warren JD, Driver J, Griffiths TD. A common cortical substrate activated by horizontal and vertical sound movement in the human brain. Curr Biol. 2002;12:1584–90.
  • Warren JD, Zielinski BA, Green GG, Rauschecker JP, Griffiths TD. Perception of sound-source motion by the human brain. Neuron. 2002;34:139–48.
  • Griffiths TD, Green GG, Rees A, Rees G. Human brain areas involved in the analysis of auditory movement. Hum Brain Mapping. 2000;9:72–80.
  • Lewis JW, Beauchamp MS, de Yoe EA. A comparison of visual and auditory motion processing in human cerebral cortex. Cereb Cortex. 2000;10:873–88.
  • Weeks R, Horwitz B, Aziz-Sultan A, Tian B, Wessinger CM, Cohen LG, . A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci. 2000;20:2664–72.
  • Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B. Voice-selective areas in human auditory cortex. Nature. 2000;403:309–12.
  • Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, . Human temporal lobe activation by speech and non-speech sounds. Cereb Cortex. 2000;10: 512–28.
  • Halgren E, Dale AM, Sereno MI, Tootell RB, Marinkovic K, Rosen BR. Location of human face-selective cortex with respect to retinotopic areas. Hum Brain Mapping. 1999;7: 29–37.
  • Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T. Human brain language areas identified by functional magnetic resonance imaging. J Neurosci. 1997;17:353–62.
  • Friederici AD, Meyer M, von Cramon DY. Auditory language comprehension: an event-related fMRI study on the processing of syntactic and lexical information. Brain Lang. 2000;74:289–300.
  • Friederici AD, Opitz B, von Cramon DY. Segregating semantic and syntactic aspects of processing in the human brain: an fMRI investigation of different word types. Cereb Cortex. 2000;10:698–705.
  • Hickok G, Poeppel D. The cortical organization of speech processing. Nat Neurosci. 2007;8:393–402.
  • Cunillera T, Càmara E, Toro JM , Pallares J M, Galles NS, Ortiz H, . Time-course and functional neuroanatomy of speech segmentation in adults. Neuroimage. 2009;48: 541–53.
  • Hernandez AE, Martinez A, Kohnert K. In search of the language switch. An fMRI study of picture naming in Spanish-English bilinguals. Brain Lang. 2000;73:421–31.
  • Kim KH, Relkin NR, Lee KM, Hirsch J. Distinct cortical areas associated with native and second languages. Nature. 1997;388:171–4.
  • Adank P, Devlin JT. Online plasticity in spoken sentence comprehension: adapting to time-compressed speech. Neuroimage. 2010;49:1124–32.
  • Ethofer T, van de Ville D, Scherer K, Vuilleumier P. Decoding of emotional information in voice-sensitive cortices. Curr Biol. 2009;19:1028–33.
  • Buechel C, Dolan RJ. Classical fear conditioning in functional neuroimaging. Curr Opin Neurobiol. 2000;10:219–23.
  • Scott SK, Young AW, Calder AJ, Hellawell DJ, Aggleton JP, Johnson M. Impaired auditory recognition of fear and anger following bilateral amygdala lesions. Nature. 1997;385: 254–7.
  • Ghika-Schmid F, Ghika J, Vuilleumier P, Assal G, Vuadens P, Scherer K, . Bihippocampal damage with emotional dysfunction: impaired auditory recognition of fear. Eur Neurol. 1997;38:276–83.
  • Buchanan TW, Lutz K, Mirzazade S, Specht K, Shah NJ, Zilles K, . Recognition of emotional prosody and verbal components of spoken language: an fMRI study. Brain Res Cogn Brain Res. 2000;9:227–38.
  • Maddock RJ, Buonocore MH. Activation of left posterior cingulated gyrus by the auditory presentation of threat-related words: an fMRI study. Psychiatry Res. 1997;75: 1–14.
  • Seifritz E, Neuhoff JG, Bilecen D, Scheffler K, Mustovic H, Schachinger H, . Neural processing of auditory looming in the human brain. Curr Biol. 2002;12:2147–51.
  • Scott SK, McGettigan C, Eisner F. A little more conversation, a little less action: candidate roles for roles for the motor cortex in speech perception. Nature Rev Neurosci. 2009;10:295–302.
  • Seifritz E, Esposito F, Neuhoff JG, Di Salle F. Response: sound analysis in auditory cortex – from temporal decomposition to perception. Trends Neurosci. 2003;26:231–2.
  • Seifritz E, Esposito F, Hennel F, Mustovic H, Neuhoff JG, Bilecen D, . Spatiotemporal pattern of neural processing in the human auditory cortex. Science. 2002;297:1706–8.
  • Zatorre RJ. Sound analysis in auditory cortex. Trends Neurosci. 2003;26:229–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.