213
Views
13
CrossRef citations to date
0
Altmetric
Original Article

In vivo toxicity evaluation of gold-dendrimer composite nanodevices with different surface charges

, , , , , , , , , , , & show all
Pages 441-451 | Received 03 Nov 2011, Accepted 17 Feb 2012, Published online: 20 Mar 2012

References

  • Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri K, Bhattacharya R, 2011. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One 6:e24374.
  • Balogh LP, Khan MK. 2007. Dendrimer nanocomposites for cancer therapy. Boca Raton, FL: CRC Press - Taylor & Francis Group.
  • Balogh L, Nigavekar SS, Nair BM, Lesniak W, Zhang C, Sung LY, 2007. Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 3:281–296.
  • Balogh L, Valluzzi R, Laverdure KS, Gido SP, Hagnauer GL, Tomalia DA. 1999. Formation of silver and gold dendrimer nanocomposites. J Nanopart Res 1:353–368.
  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY. 2009. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910.
  • Bielawski K, Bielawska A, Muszynska A, Poplawska B, Czarnomysy R. 2011. Cytotoxic activity of G3 PAMAM-NH(2) dendrimer-chlorambucil conjugate in human breast cancer cells. Environ Toxicol Pharmacol 32:364–372.
  • Bielinska A, Eichman JD, Lee I, Baker JR Jr, Balogh L. 2002. Imaging {Au0-PAMAM} gold-dendrimer nanocomposites in cells. J Nanopart Res 4:395–403.
  • Bouwmeester H, Lynch I, Marvin HJ, Dawon KA, Berges M, Braguer D, 2011. Minimal analytical characterization of. engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5:1–11.
  • Daftarian P, Kaifer AE, Li W, Blomberg BB, Frasca D, Roth F, 2011. Peptide-conjugated PAMAM dendrimer as a universal platform for antigen presenting cell targeting and effective DNA-based vaccinations. Cancer Res 71:7452–62.
  • Degeorge JJ, Ahn CH, Andrews PA, Brower ME, Giorgio DW, Goheer MA, 1998. Regulatory considerations for preclinical development of anticancer drugs. Cancer Chemother Pharmacol 41:173–185.
  • Duncan R, Izzo L. 2005. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237.
  • Gaspar R, Duncan R. 2009. Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics. Adv Drug Deliv Rev 61:1220–1231.
  • Greish K, Thiagarajan G, Herd H, Price R, Bauer H, Hubbard D, 2011. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology; Epub ahead of print.
  • Gulumian M, Vallyathan V. 2010. Nanoparticles and potential human health implications: past and future directions. Preface. J Toxicol Environ Health A 73:339–340.
  • Hagens WI, Oomen AG, De Jong WH, Cassee FRA, Sips AJ. 2007. What do we need to know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 49:217–219.
  • Hong S, Leroueil PR, Janus EK, Peters JL, Kober MM, Islam MT, 2006. Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem 17:728–734.
  • Jevprasesphant R, Penny J, Jalal R, Attwood D, Mckeown NB, D'emanuele A. 2003. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252:263–266.
  • Khan MK, Nigavekar SS, Minc LD, Kariapper MST, Nair BM, Lesniak WG, 2005. In vivo biodistribution of dendrimers and dendrimer nanocomposites - Implications for cancer imaging and therapy. Technol Cancer Res Treat 4:603–613.
  • King Heiden TC, Dengler E, Kao WJ, Heideman W, Peterson RE. 2007. Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225:70–79.
  • Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H. 2007. Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjug Chem 18:2054–2060.
  • Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, 2005. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317–5324.
  • Lee JH, Cha KE, Kim MS, Hong HW, Chung DJ, Ryu G, 2009. Nanosized polyamidoamine (PAMAM) dendrimer-induced apoptosis mediated by mitochondrial dysfunction. Toxicol Lett 190:202–207.
  • Lesniak WG, Kariapper MST, Nair BM, Tan W, Hutson A, Balogh LP, 2007. Synthesis and characterization of PAMAM dendrimer-based multifunctional nanodevices for targeting αvβ3 integrins. Bioconjug Chem 18:1148–1154.
  • Li C, Liu H, Sun Y, Wang H, Guo F, Rao S, 2009. PAMAM dendrimer nanoparticles promote acute lung injury by inducing autophagic cell death through Akt-TSC2-mTOR signaling pathway. J Mol Cell Biol 1:37–45.
  • Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, 2000. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 65:133–148.
  • Mcneil SE. 2005. Nanotechnology for the biologist. J Leukoc Biol 78:585–594.
  • Miyano T, Wijagkanalan W, Kawakami S, Yamashita F, Hashida M. 2010. Anionic amino acid dendrimer-trastuzumab conjugates for specific internalization in HER2-positive cancer cells. Mol Pharm 7:1318–1327.
  • Myc A, Majoros IJ, Thomas TP, Baker JR Jr. 2007. Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells. Biomacromolecules 8:13–18.
  • Nair BM, Kariapper MST, Lesniak WG, Tan W, Hutson A, Khan MK, 2009. Toxicity evaluation of gold-dendrimer composite nanodevices in vitro: difference found between tumour and proliferating endothelial cells. Nanotoxicology 3:1743–5404.
  • Nigavekar SS, Sung LY, Llanes M, El-Jawahri A, Lawrence TS, Becker CW, 2004. 3H dendrimer nanoparticle organ/tumor distribution. Pharm Res 21:476–483.
  • Oberdorster G, Stone V, Donaldson K. 2007. Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25.
  • Research L. 2007. The Nanotech Report. 5th ed. New York: Lux Research.
  • Rittner K, Benavente A, Bompard-Sorlet A, Heitz F, Divita G, Brasseur R, 2002. New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol Ther 5:104–114.
  • Riveragil P, Oberdorster G, Elder A, Puntes V, Parak WJ. 2010. Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4:5527–5531.
  • Roberts JC, Bhalgat MK, Zera RT. 1996. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res 30:53–65.
  • Sanhai WR, Sakamoto JH, Canady R, Ferrari M. 2008. Seven Challenges for Nanomedicine. Nat Nanotechnol 3:242–244.
  • Seib FP, Jones AT, Duncan R. 2007. Comparison of the endocytic properties of linear and branched PEIs, and cationic PAMAM dendrimers in B16f10 melanoma cells. J Control Release 117:291–300.
  • Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I, 2007. Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3:1245–1252.
  • Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK, 2006. HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem 17:1109–1115.
  • Sonavane G, Tomoda K, Makino K. 2008. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 66:274–280.
  • Thomas TP, Majoros IJ, Kotlyar A, Kukowska-Latallo JF, Bielinska A, Myc A & 2005. Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem 48:3729–3735.
  • Van Zwieter MJ, Hollander CF. 1985. Monographs on the Pathology of Laboratory Animals : Digestive Systems. Berlin: Springer-Verlag.
  • Wang J Xia J. 2011. Preferential binding of a novel polyhistidine peptide dendrimer ligand on quantum dots probed by capillary electrophoresis. Anal Chem 83:6323–6329.
  • Xu R, Wang Y, Wang X, Jeong EK, Parker DL, Lu ZR. 2007. In vivo evaluation of a PAMAM-cystamine-(Gd-DO3A) conjugate as a biodegradable macromolecular MRI contrast agent. Exp Biol Med 232:1081–1089.
  • Zhao J, Castranova V. 2011. Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B Crit Rev 14:593–632.
  • Zhu W, Okollie B, Bhujwalla ZM, Artemov D. 2008a. PAMAM dendrimer-based contrast agents for MR imaging of Her-2/neu receptors by a three-step pretargeting approach. Magn Reson Med 59:679–685.
  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y. 2008b. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:278–284.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.