565
Views
63
CrossRef citations to date
0
Altmetric
Orginal Articles

IL-33 mediates multi-walled carbon nanotube (MWCNT)-induced airway hyper-reactivity via the mobilization of innate helper cells in the lung

, , , , , , , & show all
Pages 1070-1081 | Received 26 Mar 2012, Accepted 08 Jun 2012, Published online: 29 Jun 2012

References

  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Hankin SM, Peters SA, 2010. Review of carbon nanotubes toxicity and exposure–appraisal of human health risk assessment based on open literature. Crit Rev Toxicol 40:759–790.
  • Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP, 2012. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol 129:191–198; e1-4.
  • Barlow JL, Mckenzie AN. 2011. Nuocytes: expanding the innate cell repertoire in type-2 immunity. J Leukoc Biol 90:867–874.
  • Bartemes KR 2nd, Jima K, Kobayashi T, Kephart GM, Mckenzie AN, Kita H. 2012. IL-33-Responsive lineage-CD25+CD44hi lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol 188:1503–1513.
  • Beamer CA, Migliaccio CT, Jessop F, Trapkus M, Yuan D, Holian A. 2010. Innate immune processes are sufficient for driving silicosis in mice. J Leukoc Biol 88:547–557.
  • Beamer CA, Seaver BP, Shepherd DM. 2012. Aryl hydrocarbon receptor (AhR) regulates silica-induced inflammation, but not fibrosis. Toxicol Sci 554–68.
  • Bonner JC. 2010. Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thorac Soc 7:138–141.
  • Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S, Kastelein RA. 2007. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol 179:2551–2555.
  • Chang YJ, Kim HY, Albacker LA, Baumgarth N, Mckenzie AN, Smith DE, 2011. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 12:631–638.
  • Chen X, Gavett SH, Wills-Karp M. 1995. CD4+ T lymphocyte modulation of ozone-induced murine pulmonary inflammation. Am J Respir Cell Mol Biol 12:396–403.
  • Cohn L, Tepper JS, Bottomly K. 1998. IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1, cells. J Immunol 161:3813–3816.
  • Corry DB, Grunig G, Hadeiba H, Kurup VP, Warnock ML, Sheppard D, 1998. Requirements for allergen-induced airway hyperreactivity in T and B cell-deficient mice. Mol Med 4:344–355.
  • Coyle AJ, Lloyd C, Tian J, Nguyen T, Erikkson C, Wang L, 1999. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. J Exp Med 190:895–902.
  • Di Valentin E, Crahay C, Garbacki N, Hennuy B, Gueders M, Noel A, 2009. New asthma biomarkers: lessons from murine models of acute and chronic asthma. Am J Physiol Lung Cell Mol Physiol 296:L185–L197.
  • Eiwegger T, Akdis CA. 2011. IL-33 links tissue cells, dendritic cells and Th2 cell development in a mouse model of asthma. Eur J Immunol 41:1535–1538.
  • Fubini B, Zanetti G, Altilia S, Tiozzo R, Lison D, Saffiotti U. 1999. Relationship between surface properties and cellular responses to crystalline silica: studies with heat-treated cristobalite. Chem Res Toxicol 12:737–745.
  • Funakoshi-Tago M, Tago K, Hayakawa M, Tominaga S, Ohshio T, Sonoda Y, 2008. TRAF6 is a critical signal transducer in IL-33 signaling pathway. Cell Signal 20:1679–1686.
  • Garssen J, Van Loveren H, Van Der Vliet H, Nijkamp FP. 1990. T cell mediated induction of bronchial hyperreactivity. Br J Clin Pharmacol 30(Suppl 1):153S–155S.
  • Gavett SH, Chen X, Finkelman F, Wills-Karp M. 1994. Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 10:587–593.
  • Glaab T, Taube C, Braun A, Mitzner W. 2007. Invasive and noninvasive methods for studying pulmonary function in mice. Respir Res 8:63.
  • Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, 1998. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282:2261–2263.
  • Guthrie GD Jr. 1997. Mineral properties and their contributions to particle toxicity. Environ Health Perspect 105(Suppl 5):1003–1011.
  • Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. 2009. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15:410–416.
  • Helland A, Wick P, Koehler A, Schmid K, Som C. 2007. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 115:1125–1131.
  • Heyder J. 2004. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc 1:315–320.
  • Inoue K, Koike E, Yanagisawa R, Hirano S, Nishikawa M, Takano H. 2009. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol Appl Pharmacol 237:306–316.
  • Inoue K, Takano H, Yanagisawa R, Hirano S, Sakurai M, Shimada A, 2006a. Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ Health Perspect 114:1325–1330.
  • Inoue K, Takano H, Yanagisawa R, Ichinose T, Sakurai M, Yoshikawa T. 2006b. Effects of nano particles on cytokine expression in murine lung in the absence or presence of allergen. Arch Toxicol 80:614–619.
  • Inoue K, Takano H, Yanagisawa R, Sakurai M, Abe S, Yoshino S, 2007. Effects of nanoparticles on lung physiology in the presence or absence of antigen. Int J Immunopathol Pharmacol 20:737–744.
  • Inoue K, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, 2005. Effects of nano particles on antigen-related airway inflammation in mice. Respir Res 6:106.
  • Inoue K, Yanagisawa R, Koike E, Nishikawa M, Takano H. 2010. Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: Possible role of oxidative stress. Free Radic Biol Med 48:924–934.
  • Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA, Matangkasombut P, 2012. Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 129:216–227; e1-6.
  • Kondo M, Nakata J, Arai N, Izumo T, Tagaya E, Takeyama K, 2012. Niflumic acid inhibits goblet cell degranulation in a Guinea pig asthma model. Allergol Int 61:133–142.
  • Kondo Y, Yoshimoto T, Yasuda K, Futatsugi-Yumikura S, Morimoto M, Hayashi N, 2008. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int Immunol 20:791–800.
  • Kouzaki H 2nd, Jima K, Kobayashi T, O'grady SM, Kita H. 2011. The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol 186:4375–4387.
  • Koyasu S, Moro K. 2011. Innate Th2-type immune responses and the natural helper cell, a newly identified lymphocyte population. Curr Opin Allergy Clin Immunol 11:109–114.
  • Kurokawa M, Matsukura S, Kawaguchi M, Ieki K, Suzuki S, Odaka M, 2011. Expression and effects of IL-33 and ST2 in allergic bronchial asthma: IL-33 induces eotaxin production in lung fibroblasts. Int Arch Allergy Immunol 155(Suppl 1):12–20.
  • Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, 2009. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol 183:6469–6477.
  • Lambrecht BN, Hammad H. 2012. The airway epithelium in asthma. Nat Med 18:684–692.
  • Liu X, Li M, Wu Y, Zhou Y, Zeng L, Huang T. 2009. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem Biophys Res Commun 386:181–185.
  • Lloyd CM. 2010. IL-33 family members and asthma - bridging innate and adaptive immune responses. Curr Opin Immunol 22:800–806.
  • Lloyd CM, Saglani S. 2010. Asthma and allergy: the emerging epithelium. Nat Med 16:273–274.
  • Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC, 1998. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc Natl Acad Sci USA 95:6930–6935.
  • Matheson JM, Lange RW, Lemus R, Karol MH, Luster MI. 2001. Importance of inflammatory and immune components in a mouse model of airway reactivity to toluene diisocyanate (TDI). Clin Exp Allergy 31:1067–1076.
  • Meisel C, Bonhagen K, Lohning M, Coyle AJ, Gutierrez-Ramos JC, Radbruch A, 2001. Regulation and function of T1/ST2 expression on CD4+ T cells: induction of type 2 cytokine production by T1/ST2 cross-linking. J Immunol 166:3143–3150.
  • Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, 2010. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463:540–544.
  • Moussion C, Ortega N, Girard JP. 2008. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'? PLoS One 3:e3331.
  • Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, 2010. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370.
  • North ML, Amatullah H, Khanna N, Urch B, Grasemann H, Silverman F, 2011. Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma. Respir Res 12:19.
  • Oboki K, Nakae S, Matsumoto K, Saito H. 2011. IL-33 and airway inflammation. Allergy Asthma Immunol Res 3:81–88.
  • Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A, 2010. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci USA 107:18581–18586.
  • Pacurari M, Castranova V, Vallyathan V. 2010. Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J Toxicol Environ Health A 73:378–395.
  • Padilla J, Daley E, Chow A, Robinson K, Parthasarathi K, Mckenzie AN, 2005. IL-13 regulates the immune response to inhaled antigens. J Immunol 174:8097–8105.
  • Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K. 2009. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology 259:113–121.
  • Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269:136–147.
  • Prefontaine D, Nadigel J, Chouiali F, Audusseau S, Semlali A, Chakir J, 2010. Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin Immunol 125:752–754.
  • Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, 2010. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA 107:11489–11494.
  • Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC. 2009. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol 40:349–358.
  • Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr, Tocker JE, 2010. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464:1362–1366.
  • Saunders V, Breysse P, Clark J, Sproles A, Davila M, Wills-Karp M. 2010. Particulate matter-induced airway hyperresponsiveness is lymphocyte dependent. Environ Health Perspect 118:640–646.
  • Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, Mcclanahan TK, 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490.
  • Smith DE. 2010. IL-33: a tissue derived cytokine pathway involved in allergic inflammation and asthma. Clin Exp Allergy 40:200–208.
  • Vanoirbeek JA, Rinaldi M, De Vooght V, Haenen S, Bobic S, Gayan-Ramirez G, 2009. Noninvasive and invasive pulmonary function in mouse models of obstructive and restrictive respiratory diseases. Am J Respir Cell Mol Biol 96–104.
  • Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, 2011. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol 8:24.
  • Wegmann M. 2011. Targeting eosinophil biology in asthma therapy. Am J Respir Cell Mol Biol 45:667–674.
  • Wells SM, Buford MC, Migliaccio CT, Holian A. 2008. Elevated asymmetric dimethylarginine alters lung function and induces collagen deposition in mice. Am J Respir Cell Mol Biol 179–88.
  • Williams CM, Rahman S, Hubeau C, Ma HL. 2012. Cytokine pathways in allergic disease. Toxicol Pathol 205–15.
  • Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, 1998. Interleukin-13: central mediator of allergic asthma. Science 282:2258–2261.
  • Yamaguchi A, Fujitani T, Ohyama K, Nakae D, Hirose A, Nishimura T, 2012. Effects of sustained stimulation with multi-wall carbon nanotubes on immune and inflammatory responses in mice. J Toxicol Sci 37:177–189.
  • Zhou Y, Dong Q, Louahed J, Dragwa C, Savio D, Huang M, 2001. Characterization of a calcium-activated chloride channel as a shared target of Th2 cytokine pathways and its potential involvement in asthma. Am J Respir Cell Mol Biol 25:486–491.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.