145
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Induction thermal plasma process modifies the physicochemical properties of materials used for carbon nanotube production, influencing their cytotoxicity

, &
Pages 1225-1243 | Received 20 Jan 2012, Accepted 04 Sep 2012, Published online: 15 Oct 2012

References

  • Abbracchio MP, Heck JD, Costa M. 1982. The phagocytosis and transforming activity of crystalline metal sulfide particles are related to their negative surface charge. Carcinogenesis 3(2):175–180.
  • Ajayan PM, Lambert JM, Bernier P, Barbedette L, Colliex C, Planeix JM. 1993. Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis. Chem Phys Lett 215(5):509–517.
  • Alinejad Y, Shahverdi A, Kim KS, Soucy G. 2010. The effect of different types of carbon black on the production of single-walled carbon nanotubes by the induction thermal plasma method. High Temp Mater Processes 14(1-2):101–117.
  • Andelman T, Gordonov S, Busto G, Moghe PV, Riman RE. 2010. Synthesis and cytotoxicity of Y2O3 Nanoparticles of various morphologies. Nanoscale Res Lett 5(2):263–273.
  • Ando Y, Zhao X. 2006. Synthesis of carbon nanotubes by arc-discharge method. New Diam Front C Tec 16(3):123–137.
  • Baltrop JA, Owen TC, Cory AH, Cory JG. 1991. 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3- (4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans as cell-viability indicators. Bioorg Med Chem Lett 1(11):611–614.
  • Belade E, Armand L, Martinon L, Kheuang L, Fleury-Feith J, Baeza-Squiban A, et al. 2012. A comparative transmission electron microscopy study of titanium dioxide and carbon black nanoparticles uptake in human lung epithelial and fibroblast cell lines. Toxicol Vitro 26:57–66.
  • Bello D, Wardle BL, Yamamoto N, Guzman DeVilloria R, Garcia EJ, Hart AJ, et al. 2009. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanopart Res 11(1):231–249.
  • Bello D, Wardle BL, Zhang J, Yamamoto N, Santeufemio C, Hallock M, et al. 2010. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Int J Occup Environ Health 16(4):434–450.
  • Berber S, Kwon YK, Tomanek D. 2000. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616.
  • Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, et al. 1993. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605–607.
  • Borenfreund E, Puerner JA. 1984. A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). Tissue Cult Methods. 9:7–9.
  • Chiang IW, Brinson BE, Huang AY, Willis PA, Bronikowski MJ, Margrave JL, et al. 2001. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J Phys Chem B 105(35):8297–8301.
  • Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan PM. 2008. Continuous carbon nanotube reinforced composites. Nano Lett 8(9):2762–2766.
  • Cory AH, Owen TC, Barltrop JA, Cory JG. 1991. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commum 3(7):207–212.
  • Costa M, Mollenhauer HH. 1980. Carcinogenic activity of particulate nickel compounds is proportional to their cellular uptake. Science 209(4455):515–517.
  • Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE. 1996. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260(3-4):471–475.
  • Dervishi E, Li Z, Xu Y, Saini V, Biris AR, Lupu D, et al. 2009. Carbon nanotubes: synthesis, properties, and applications. Part Sci Technol 27(2):107–125.
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, et al. 2006. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22.
  • Drescher D, Orts-Gil G, Laube G, Natte K, Veh RW, Osterle W, et al. 2011. Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Anal Bioanal Chem 400(5):1367–1373.
  • Duffin R, Colouter A, Brown D, Tran CL, MacNee W, Stone V, et al. 2002. The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Ann Occup Hyg 46(Suppl 1):242–245.
  • Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. 1996. Electrical conductivity of individual carbon nanotubes. Nature 382(6586):54–56.
  • Fadel TR, Look M, Staffier PA, Haller GL, Pfefferle LD, Fahmy TM. 2010. Clustering of stimuli on single-walled carbon nanotube bundles enhances cellular activation. Langmuir 26(8):5645–5654.
  • Fagerlund G. 1973. Determination of specific surface by the BET method. Mat Constr 6(3):239–245.
  • Fiorito S, Serafino A, Andreola F, Togna A, Togna G. 2006. Toxicity and biocompatibility of carbon nanoparticles. J Nanosci Nanotechnol 6(3):591–599.
  • Foucaud L, Goulaouic S, Bennasroune A, Laval-Gilly P, Brown D, Stone V, et al. 2010. Oxidative stress induction by nanoparticles in THP-1 cells with 4-HNE production: stress biomarker or oxidative stress signalling molecule? Toxicol Vitro 24(6):1512–1520.
  • Guo L, Morris DG, Liu X, Vaslet C, Hurt RH, Kane AB. 2007. Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem Mater 19(14):3472–3478.
  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, et al. 2008. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 20(8):741–749.
  • Harutyunyan AR, Pradhan BK, Sumanasekera GU, Korobko EY, Kuznetsov AA. 2002. Carbon nanotubes for medical applications. Eur Cells and Mater 3(Suppl 2):84–87.
  • Hayamizu Y, Yamada T, Mizuno K, Davis RC, Futaba DN, Yumura M, et al. 2008. Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers. Nat Nanotechnol 3(5):289–294.
  • Helland A, Wick P, Koehler A, Schmid K, Som C. 2008. Reviewing the environmental and human health knowledge base of carbon nanotubes. Cienc Saude Coletiva 13(2):441–452.
  • Horev-Azaria L, Kirkpatrick CJ, Korenstein R, Marche PN, Maimon O, Ponti J, et al. 2011. Predictive toxicology of cobalt nanoparticles and ions: comparative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicol Sci 122(2):489–501.
  • Hsieh SF, Bello D, Schmidt DF, Pal AK, Rogers EJ. 2012. Biological oxidative damage by carbon nanotubes: fingerprint or footprint? Nanotoxicology 6(1):61–76.
  • Hu H, Zhao B, Itkis ME, Haddon RC. 2003. Nitric acid purification of single-walled carbon nanotubes. J Phys Chem B 107(50):13838–13842.
  • Iijima S. 1991. Helical microtubules of graphitic carbon. Nature 354(6348):56–58.
  • Issa Y, Brunton P, Waters CM, Watts DC. 2008. Cytotoxicity of metal ions to human oligodendroglial cells and human gingival fibroblasts assessed by mitochondrial dehydrogenase activity. Dent Mater 24(2):281–287.
  • Ji Z, Jin X, George S, Xia T, Meng H, Wang X, et al. 2010. Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44(19):7309–7314.
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, et al. 2010. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4(2):207–246.
  • Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, et al. 1997. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388(6644):756–758.
  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, et al. 2006. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron 21. Toxicol Lett 165(1):88–100.
  • Kiang CH, Goddard WA 3rd, Beyers R, Bethune DS. 1995. Carbon nanotubes with single-layer walls. Carbon 33(7):903–914.
  • Kim KS, Cota-Sanchez G, Kingston CT, Imris M, Simard B, Soucy G. 2007a. Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J Phys D 40(8):2375–2387.
  • Kim KS, Imris M, Shahverdi A, Alinejad Y, Soucy G. 2009a. Single-walled carbon nanotubes prepared by large-scale induction thermal plasma process: synthesis, characterization, and purification. J Phys Chem C 113(11):4340–4348.
  • Kim KS, Moradian A, Mostaghimi J, Alinejad Y, Shahverdi A, Simard B, et al. 2009b. Synthesis of single-walled carbon nanotubes by induction thermal plasma. Nano Res 2(10):800–817.
  • Kingston CT, Simard B. 2006. Recent advances in laser synthesis of single-walled carbon nanotubes. J Nanosci Nanotechnol 6(5):1225–1232.
  • Kumar M, Ando Y. 2010. Carbon nanotube synthesis and growth mechanism. Nanotechnol Percept 6(1):7–28.
  • Lambert JM, Ajayan PM, Bernier P, Planeix JM, Brotons V, Coq B, et al. 1994. Improving conditions towards isolating single-shell carbon nanotubes. Chem Phys Lett 226(3-4):364–371.
  • Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, et al. 2009. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14.
  • Lira MCB, Santos-Magalhaes NS, Nicolas V, Marsaud V, Silva MPC, Ponchel G, et al. 2011. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur J Pharm Biopharm 79(1):162–170.
  • Lu X, Bao X, Huang Y, Qu Y, Lu H, Lu Z. 2009. Mechanisms of cytotoxicity of nickel ions based on gene expression profiles. Biomaterials 30(2):141–148.
  • Machado BI, Suro RM, Garza KM, Murr LE. 2011. Comparative microstructures and cytotoxicity assays for ballistic aerosols composed of micrometals and nanometals: respiratory health implications. Int J Nanomed 6(1):167–178.
  • Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, Van Horn B, Guan Z, et al. 2006. General strategies for nanoparticle dispersion. Science 311(5768):1740–1743.
  • MacNee W, Donaldson K. 2003. Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. Eur Respir J Suppl 21(40):47S–51S.
  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. 2004. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health Part A 67(1):87–107.
  • Methner MM, Birch ME, Evans DE, Ku BK, Crouch K, Hoover MD. 2007. Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg 4(12):D125–D130.
  • Mitchell DB, Santone KS, Acosta D. 1981. Evaluation of cytotoxicity in cultured cells by enzyme leakage. J Tissue Cult Methods 6(3-4):113–116.
  • Moisala A, Nasibulin AG, Kauppinen EI. 2003. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes - A review. J Phys Condens Matter 15(42):S3011–S3035.
  • Monteiro-Riviere NA, Inman AO, Zhang LW. 2009. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235.
  • Mostardi RA, Kovacik MW, Ramsier RD, Bender ET, Finefrock JM, Bear TF, et al. 2010. A comparison of the effects of prosthetic and commercially pure metals on retrieved human fibroblasts: the role of surface elemental composition. Acta Biomater 6(2):702–707.
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253.
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557.
  • Oberdorster G, Oberdorster E, Oberdorster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839.
  • Oberdorster G, Stone V, Donaldson K. 2007. Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25.
  • Ong KG, Grimes CA. 2001. A carbon nanotube-based sensor for CO2 monitoring. Sensors 1(6):193–205.
  • Pauluhn J. 2009. Retrospective analysis of 4-week inhalation studies in rats with focus on fate and pulmonary toxicity of two nanosized aluminum oxyhydroxides (boehmite) and pigment-grade iron oxide (magnetite): The key metric of dose is particle mass and not particle surface area. Toxicology 259(3):140–148.
  • Peters K, Unger RE, Kirkpatrick CJ, Gatti AM, Monari E. 2004. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15(4):321–325.
  • Pietruska JR, Xinyuan L, Smith A, McNeil K, Weston P, Zhitkovich A, et al. 2011. Bioavailability, intracellular mobilization of nickel, and HIF-1a activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticle. Toxicol Sci 124(1):138–148.
  • Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F, et al. 2009. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 24(5):439–445.
  • Pulskamp K, Diabate S, Krug HF. 2007. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74.
  • Reisetter AC, Stebounova LV, Baltrusaitis J, Powers L, Gupta A, Grassian VH, et al. 2011. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. J Biol Chem 286(24):21844–21852.
  • Repetto G, del Peso A, Zurita JL. 2008. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3(7):1125–1131.
  • Rudolf E, Cervinka M. 2010. Nickel modifies the cytotoxicity of hexavalent chromium in human dermal fibroblasts. Toxicol Lett 197(2):143–150.
  • Rummeli MH, Bachmatiuk A, Borrnert F, Schaffel F, Ibrahim I, Cendrowski K, et al. 2011. Synthesis of carbon nanotubes with and without catalyst particles. Nanoscale Res Lett 6(1):1–9.
  • Ruoff RS, Lorents DC. 1995. Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930.
  • Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V. 2007. Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1(2):118–129.
  • Sakai T, Takeda S, Nakamura M. 2002. The effects of particulate metals on cell viability of osteoblast-like cells in vitro. Dent Mater J 21(2):133–146.
  • Salvetat JP, Kulik AJ, Bonard JM, Briggs GAD, Stockli T, Metenier K, et al. 1999. Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv Mater 11(2):161–165.
  • Schubert D, Dargusch R, Raitano J, Chan SW. 2006. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342(1):86–91.
  • Schulte PA, Schubauer-Berigan MK, Mayweather C, Geraci CL, Zumwalde R, McKernan JL. 2009. Issues in the development of epidemiologic studies of workers exposed to engineered nanoparticles. J Occup Environ Med 51(3):323–335.
  • Shigeta M, Murphy AB. 2011. Thermal plasmas for nanofabrication. J Phys D 44(17):174025–1716pp.
  • Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L. 2010. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22.
  • Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, et al. 2010. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197(3):169–174.
  • Taurozzi JS, Hackley VA, Wiesner MR. 2011. Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment issues and recommendations. Nanotoxicology 5(4):711–729.
  • Tejral G, Panyala NR, Havel J. 2009. Carbon nanotubes: toxicological impact on human health and environment. J App Biomed 7(1):1–13.
  • Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, et al. 2009. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 10(6):1429–1435.
  • Treacy MMJ, Ebbesen TW, Gibson JM. 1996. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381(6584):678–680.
  • Wang L, Castranova V, Mishra A, Chen B, Mercer RR, Schwegler-Berry D, et al. 2010. Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part Fibre Toxicol 7:31.
  • Warheit DB, Reed KL, Sayes CM. 2009. A role for surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity. Nanotoxicology 3(3):181–187.
  • Warheit DB. 2008. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185.
  • Worle-Knirsch JM, Pulskamp K, Krug HF. 2006. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6(6):1261–1268.
  • Yamawaki H, Iwai N. 2006. Mechanisms underlying nano-sized air-pollution-mediated progression of atherosclerosis: carbon black causes cytotoxic injury/inflammation and inhibits cell growth in vascular endothelial cells. Circ J 70(1):129–140.
  • Yu MF, Files BS, Arepalli S, Ruoff RS. 2000. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555.
  • Zanello LP, Zhao B, Hu H, Haddon RC. 2006. Bone cell proliferation on carbon nanotubes. Nano Lett 6(3):562–567.
  • Zhang Y, Iijima S. 1999. Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl Phys Lett 75(20):3087–3089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.