496
Views
43
CrossRef citations to date
0
Altmetric
Original Article

Effects of silver nanoparticles on pregnant dams and embryo-fetal development in rats

, , , , , , , , & show all
Pages 85-91 | Received 09 Jul 2013, Accepted 17 Oct 2013, Published online: 22 Nov 2013

References

  • Aebi H. 1984. Catalase in vitro. In: Packer L, editor. Methods in Enzymology, Vol. 105. San Diego: Academic press, 121–6
  • Ahamed M, AlSalhi MS, Siddiqui MKJ. 2010. Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–8
  • Arora S, Jain J, Rajwade JM, Paknikar KM. 2009. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol 236:310–18
  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S. 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102
  • Berton TR, Conti CJ, Mitchell DL, Aldaz CM, Lubet RA, Fischer SM. 1998. The effect of vitamin E acetate on ultraviolet-induced mouse skin carcinogenesis. Mol Carcinog 23:175–84
  • Carlberg I, Mannervik B. 1986. Reduction of 2,4,6-trinitrobenzenesulfonate by glutathione reductase and the effect of NADP+ on the electron transfer. J Biol Chem 261:1629–35
  • Cha K, Hong HW, Choi YG, Lee MJ, Park JH, Chae HK, et al. 2008. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett 30:1893–9
  • Chahoud I, Buschman J, Clark R, Druga A, Falke H, Faqi A, et al. 1999. Classification terms in developmental toxicology: need for harmonization. Reprod Toxicol 13:77–82
  • Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, et al. 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–9
  • Dawson AB. 1926. A note on the staining of the skeleton of cleared specimens with Alizarin Red S. Stain Technol 1:123–4
  • Ema M, Kobayashi N, Naya M, Hanai S, Nakanishi J. 2010. Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 30:343–52
  • Habig WH, Jakoby WB, Guthenberg C, Mannervik B, Vander Jagt DL. 1984. 2-Propylthiouracil does not replace glutathione for the glutathione transferases. J Biol Chem 259:7409–10
  • Hadrup N, Loeschner K, Bergström A, Wilcks A, Gao X, Vogel U, et al. 2012. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch Toxicol 86:543–51
  • Hansen JM. 2006. Oxidative stress as a mechanism of teratogenesis. Birth Defects Res C Embryo Today 78:293–307
  • Hong JS, Kim S, Lee SH, Jo E, Lee B, Yoon J, et al. 2013. Combined repeated-dose toxicity study of silver nanoparticles with the reproduction/developmental toxicity screening test. Nanotoxicology DOI: 10.3109/17435390.2013.780108
  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–83
  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. 2010. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–46
  • Kawata K, Osawa M, Okabe S. 2009. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–51
  • Kim JC, Lee SJ, Bae JS, Park JI, Kim YB, Chung MK. 2001. Historical control data for developmental toxicity study in Sprague-Dawley rats. J Toxicol Pub Health 17:83–90
  • Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, et al. 2009. Oxidative stress dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23:1076–84
  • Kim SH, Lee IC, Lim JH, Moon C, Bae CS, Kim SH, et al. 2012. Protective effects of pine bark extract on developmental toxicity of cyclophosphamide in rats. Food Chem Toxicol 50:109–15
  • Kim YJ, Yang SI, Ryu JC. 2010a. Cytotoxicity and genotoxicity of nano-silver in mammalian cell lines. Mol Cell Toxicol 6:119–25
  • Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, et al. 2008. Twenty-eight-day oral toxicity, genotoxicity, and gender related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–83
  • Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, et al. 2010b. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:20
  • Kittler S, Greulich C, Diendorf J, Koller M, Epple M. 2010. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–54
  • Korani M, Rezayat SM, Gilani K, Arbabi Bidgoli S, Adeli S. 2011. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomed 6:855–62
  • Kovacic P, Somanathan R. 2006. Mechanism of teratogenesis: electron transfer, reactive oxygen species, and antioxidants. Birth Defects Res C Embryo Today 78:308–25
  • Laban G, Nies LF, Turco RF, Bickham JW, Sepulveda MS. 2009. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19:185–95
  • Lee JM, Lee MA, Do HN, Song YI, Bae RJN, Lee HY, et al. 2012. Historical control data from 13-week repeated toxicity studies in Crj:CD (SD) rats. Lab Anim Res 28:115–21
  • Li PW, Kuo TH, Chang JH, Yeh JM, Chan WH. 2010. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol Lett 197:82–7
  • Lim JH, Kim SH, Shin IS, Park NH, Moon C, Kang SS, et al. 2011. Maternal exposure to multi-wall carbon nanotubes does not induce embryo–fetal developmental toxicity in rats. Birth Defects Res (B) 92:69–76
  • Lima R, Seabra AB, Durán N. 2012. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32:867–79
  • Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, et al. 2011. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with folin phenol reagent. J Biol Chem 193:265–75
  • Makris SL, Solomon HM, Clark R, Shiota K, Barbellion S, Buschmann J, et al. 2009. Terminology of developmental abnormalities in common laboratory mammals (version 2). Birth Defects Res B Dev Reprod Toxicol 86:227−327
  • Morita H, Ariyuki F, Inomata N, Nishimura K, Hasegawa Y, Miyamoto M, et al. 1987. Spontaneous malformations in laboratory animals: frequency of external, internal and skeletal malformations in rats, rabbits and mice. Cong Anom 27:147–206
  • Moron MS, Depierre JW, Mannervik B. 1979. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science, 311:622–627
  • Nishimura KA. 1974. Microdissection method for detecting thoracic visceral malformations in mouse and rat fetuses. Cong Anom 14:23–40
  • Petterino C, Argentino-Storino A. 2006. Clinical chemistry and haematology historical data in control Sprague-Dawley rats from pre-clinical toxicity studies. Exp Toxicol Pathol 57:213–19
  • Philbrook NA, Winn LM, Afrooz AR, Saleh NB, Walker VK. 2011. The effect of TiO(2) and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol 257:429–36
  • Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, et al. 2011. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201:92–100
  • Powers CM, Slotkin TA, Seidler FJ, Badireddy AR, Padilla S. 2011. Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol 33:708–14
  • Quinn CE, Folkard C, Detmar J, Casper RF. 2008. Enhanced endocytotic and transcytotic activity in the rat endometrium prior to embryo implantation. J Mol Hist 39:409–15
  • Ringwood AH, McCarthy M, Bates TC, Carroll DL. 2010. The effects of silver nanoparticles on oyster embryos. Marine Environ Res 69:S49–51
  • Rogers JM, Setzer RW, Branch S, Chernoff N. 2004. Chemically induced supernumerary lumbar ribs in CD-1 mice: size distribution and dose response. Birth Defects Res B Dev Reprod Toxicol 71:17–25
  • Salewski E. 1964. Farbemethode zum makroscopischen nachweis von implantations stellen am uterus der ratte. Naunyn-Schmiedebergs Arch Pathol Exp Pharmakol 247:367
  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. 2012. Toxicity of nanomaterials. Chem Soc Rev 41:2323–43
  • Sintubin L, Verstraete W, Boon N. 2012. Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109:2422–36
  • Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepúlveda MS. 2011. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond) 6:879–98
  • Tiwari DK, Jin T, Behari J. 2011. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods 21:13–24
  • Uchiyama M, Mihara M. 1978. Determination of MDA precursor in tissue by TBA test. Anal Biochem 36:271–8
  • Wilson JG. 1965. Methods for administering agents and detecting malformations in experimental animals. In: Wilson JG, Warkany J, editors. Teratology: Principles and Techniques. Chicago: University of Chicago Press, 262–77
  • Wolford ST, Schroer RA, Gohs FX, Gallo PP, Brodeck M, Falk HB, et al. 1986. Reference range data base for serum chemistry and hematology values in laboratory animals. J Toxicol Environ Health 18:161–88
  • Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G. 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat Toxicol 100:160–7
  • Yamada T, Ohsawa K, Ohno H. 1988. The usefulness of alkaline solutions for clearing the uterus and staining implantation sites in rats. Exp Anim 37:325–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.