300
Views
25
CrossRef citations to date
0
Altmetric
Original Article

Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (Fundulus heteroclitus) embryos

, , , , , , , , , & show all
Pages 167-176 | Received 12 Jul 2013, Accepted 06 Nov 2013, Published online: 20 Dec 2013

References

  • Adams NWH, Kramer JR. 1999. Potentiometric determination of silver thiolate formation constants using a Ag2S electrode. Aquat Geochem 5:1–11
  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–18
  • ANEC, BEUC. 2012. Nano very small and everywhere. A technological magic silver bullet or a serious safety risk? 35p. http://www.beuc.org/Content/Default.asp?PageID=746
  • Arnold WR, Cotsifas JS, Winter AR, Klinck JS, Smith DS, Playle RC. 2007. Effects of using synthetic sea salts when measuring and modeling copper toxicity in saltwater toxicity tests. Environ Toxicol Chem 26:935–43
  • Atkinson MJ, Barnett H, Aceves H, Langdon C, Carpenter SJ, McConnaughey T, et al. 1999. The Biosphere 2 coral reef biome. Ecol Chem Eng 13:147–72
  • Auffan M, Bottero JY, Chaneac C, Rose J. 2010. Inorganic manufactured nanoparticles: how their physico-chemical properties influence their biological effects in aqueous environments. Nanomedicine 5:999–1007
  • Auffan M, Rose J, Wiesner MR, Bottero JY. 2009. Chemical stability of metallic nanoparticles: a parameter controlling their potential toxicity in vitro. Environ Pollut 157:1127–33
  • Bar-Ilan O, Louis KM, Yang SP, Pedersen JA, Hamers RJ, Peterson RE, Heideman W. 2011. Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology 6:670–9
  • Bonsignorio D, Perego L, Del Giacco L, Cotelli F. 1996. Structure and macromolecular composition of the zebrafish egg chorion. Zygote 4:101–8
  • Bury NR, Galvez F, Wood CM. 1999. Effects of chloride, calcium, and dissolved organic carbon on silver toxicity: comparison between rainbow trout and fathead minnows. Environ Toxicol Chem 18:56–62
  • Cheng J, Flahaut E, Cheng SH. 2007. Effect of carbone nanotubes on developing zebrafish (Danio rerio) embryos. Environ Toxicol Chem 26:708–16
  • Chernousova S, Epple M. 2013. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52:1636–53
  • de Lima R, Seabra AB, Durán N. 2012. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32:867–79
  • Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U. 2010. Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquat Toxicol 100:218–28
  • Galvez F, Wood CM. 1997. The relative importance of water hardness and chloride levels in modifying the acute toxicity of silver to rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 16:2363–8
  • Ganor J, Mogollun JL, Lasaga AC. 1999. Kinetics of gibbsite dissolution under low ionic strength conditions. Geochim Cosmochim Acta 63:1635–51
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–22
  • Griffith RW. 1974. Environment and salinity tolerance in the Genus Fundulus. Copeia 1974:319–31
  • Guadagnolo CM, Brauner CJ, Wood CM. 2000. Effects of an acute silver challenge on survival, silver distribution and ionoregulation within developing rainbow trout eggs (Oncorhynchus mykiss). Aquatic Toxicology 51:195–211
  • Hamor T, Garside ET. 1977. Quantitative composition of the fertilized ovum and constituent parts in the Atlantic salmon Salmo salar. Can J Zool 55:1650–5
  • Handy RH, Von der Kammer F, Lead JR, Hassellov M, Owen R, Crane M. 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314
  • Ho CM, Yqu SKW, Lok CN, So MH, Che CM. 2010. Dissolution of silver nanoparticles by biological relevant oxidants: a kinetic and mechanistic study. Chem Asian J 5:285–93
  • Hogstrand C, Wood CM. 1998. Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: implications for water quality criteria. Environ Toxicol Chem 17:547–61
  • Kaighn ME. 1964. A biochemical study of the hatching process in Fundulus heteroclitus. Adv Dev Biol 9:56–80
  • Kim JY, Kim K-T, Lee BG, Lim BJ, Kim SD. 2013. Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid. Ecotoxicol Environ Safety 92:57–63
  • Kwok KWH, Auffan M, Badireddy AR, Nelson CM, Wiesner MR, Chilkoti A, et al. 2012. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat Toxicol 120–121:59–66
  • Laban G, Nies LF, Turco RF, Bickham JW, Sepulveda MS. 2010. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19:185–95
  • Lee KJ, Browning LM, Nallathamby PD, Desai T, Cherukuri PK, Xu X-HN. 2012a. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chem Res Toxicol 25:1029–46
  • Lee KJ, Nallathamby PD, Browning LM, Desai T, Cherukuri PK, Xu X-HN. 2012b. Single nanoparticle spectroscopy for real-time in vivo quantitative analysis of transport and toxicity of single nanoparticles in single embryos. Analyst 137:2973–86
  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu X-HN. 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–43
  • Lee PC, Meisel D. 1982. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–5
  • Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE. 2011. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 45:5260–6
  • Li X, Lenhart JJ, Walker HW. 2010. Dissolution-accompagnied aggregation kinetics of silver nanoparticles. Langmuir 26:16690–8
  • Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, Moon TW. 2013. Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92:59–66
  • Meyer J, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, et al. 2010. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–50
  • Munro CH, Smith WE, Garner M, Clarkson J, White PC. 1995. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance raman scattering. Langmuir 11:3712–20
  • Park H-G, Yeo M-K. 2013. Comparison of gene expression changes induced by exposure to Ag, Cu-TiO2, and TiO2 nanoparticles in zebrafish embryos. Mol Cell Toxicol 9:129–39
  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ. 2011. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69–78
  • Proux O, Biquard X, Lahera E, Menthonnex J-J, Prat A, Ulrich O, et al. 2005. FAME: a new beamline for X-ray absorption investigations of very-diluted systems of environmental, material and biological interests. Phys Scr T115:970–3
  • Ratte HT. 1999. Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108
  • Ravel B, Newville M. 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–41
  • Sole VA, Papillon E, Cotte M, Walter P, Susini J. 2007. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B 62:63–8
  • Susini J, Salome M, Fayard B, Ortega R, Kaulich B. 2002. The scanning X-ray microprobe at the ESRF “X-ray microscopy” beamline. Surf Rev Lett 9:203–11
  • von Westernhagen H. 1988. Sublethal effects of pollutants on fish eggs and larvae. In: Hoar WS & Randall DJ, eds. Fish Physiology. San Diego (CA): Academic Press, 253–346
  • Webb NA, Wood CM. 2000. Bioaccumulation and distribution of silver in four marine teleosts and two marine elasmobranchs: influence of exposure duration, concentration, and salinity. Aquat Toxicol 49:111–29
  • Wood CM, McDonald MD, Walker P, Grosell M, Barimo JF, Playle RC, Walsh PJ. 2004. Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta). Aquat Toxicol 70:137–57
  • Wu Y, Zhou Q. 2012. Dose- and time-related changes in aerobic metabolism, chorionic disruption, and oxidative stress in embryonic medaka (Oryzias latipes): underlying mechanisms for silver nanoparticle developmental toxicity. Aquat Toxicol 124:238–46
  • Yang X, Gondikas A, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer J. 2012. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–27
  • Yeo M-K, Yoon J-W. 2009. Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mol Cell Toxicol 5:23–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.