718
Views
42
CrossRef citations to date
0
Altmetric
Original Article

Toxicology of ZnO and TiO2 nanoparticles on hepatocytes: Impact on metabolism and bioenergetics

, , , , , , & show all
Pages 126-134 | Received 06 Apr 2013, Accepted 12 Feb 2014, Published online: 08 Apr 2014

References

  • Nanotechnology consumer products inventory. Available at: http://www.nanotechproject.org/inventories/consumer/. Accessed on 5 January 2012
  • Baek M, Chung HE, Yu J, Lee JA, Kim TH, Oh JM, et al. 2012. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomedicine 7:3081–97
  • Bergmeyer HU, Gawehn ICWK, ed. 1974. Methods of Enzymatic Analysis. Weinheim: Verlag Chemie; New York: Academic Press
  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. 2006. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–70
  • Cho WS, Duffin R, Howie SEM, Scotton CJ, Wallace WAH, Macnee W, et al. 2011. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 8:27
  • Constantin J, Ishii-Iwamoto E, Suzuki-Kemmelmeier F, Yamamoto N, Bracht A. 1995. Bivascular liver perfusion in the anterograde and retrograde modes: zonation of the response to inhibitors of oxidative phosphorylation. Cell Biochem Funct 13:201–9
  • Dineley KE, Votyakova TV, Reynolds IJ. 2003. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 85:563–70
  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, et al. 2005. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10
  • Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, van Ravenzwaay B. 2008. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 82:151–7
  • Groen A, Vervoorn R, Van D, Tager J. 1983. Control of gluconeogenesis in rat liver cells. I. Kinetics of the individual enzymes and the effect of glucagon. J Biol Chem 258:14346–53
  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–83
  • Ito Y, Oumi S, Nagasawa T, Nishizawa N. 2006. Oxidative stress induces phosphoenolpyruvate carboxykinase expression in H4IIE cells. Biosci Biotechnol Biochem 70:2191–8
  • Jani P, Halbert G, Langridge J, Florence A. 1990. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–6
  • Jeng HA, Swanson J. 2006. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2699–711
  • Jones N, Ray B, Ranjit KT, Manna AC. 2008. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–6
  • Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H, Mittal JP. 1998. Oxidative damage induced by the fullerene C60 on photosensitization in rat liver microsomes. Chem Biol Interact 114:145–59
  • Kao Y, Chen Y, Cheng T, Chiung Y, Liu P. 2012. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125:462–72
  • Kermanizadeh A, Gaiser B, Hutchison G, Stone V. 2012. An in vitro liver model – assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part Fibre Toxicol. 9:28
  • Kermanizadeh A, Pojana G, Gaiser B, Birkedal R, Bilanicová D, Wallin H, et al. 2013. In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, pro-inflammatory cytokines and functional markers. Nanotoxicology 7:301–13
  • Khandoga A, Stampfl A, Takenaka S, Schulz H, Radykewicz R, Kreyling W, Krombach F. 2004. Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation 109:1320–5
  • Klingshirn C. 2007. ZnO: material, physics and applications. Chemphyschem 8:782–803
  • Koukkunen H, Penttilä K, Kemppainen A, Halinen M, Penttila I, Rantanen T, Pyörälä K. 2001. C-reactive protein, fibrinogen, interleukin-6 and tumour necrosis factor-alpha in the prognostic classification of unstable angina pectoris. Ann Med 33:37–47
  • Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, et al. 2009. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21:55–60
  • Lee SJ, Jin Y, Yoon HY, Choi BO, Kim HC, Oh YK, et al. 2005. Ciclopirox protects mitochondria from hydrogen peroxide toxicity. Br J Pharmacol 145:469–76
  • Leverve XM, Fontaine E, Putod-Paramelle F, Rigoulet M. 1994. Decrease in cytosolic ATP/ADP ratio and activation of pyruvate kinase after in vitro addition of almitrine in hepatocytes isolated from fasted rats. Eur J Biochem 224:967–74
  • Li C, Shen C, Cheng Y, Huang S, Wu C, Kao C, et al. 2012. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6:746–56
  • Lockman K, Baren J, Pemberton C, Baghdadi H, Burgess K, Plevris-Papaioannou N, et al. 2012. Oxidative stress rather than triglyceride accumulation is a determinant of mitochondrial dysfunction in in vitro models of hepatic cellular steatosis. Liver Int 32:1079–92
  • Long T, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, et al. 2007. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 115:1631–7
  • Maheshwari A, Thuluvath PJ. 2006. Cryptogenic cirrhosis and NAFLD: are they related? Am J Gastroenterol 101:664–8
  • Miller MR, Borthwick SJ, Shaw CA, McLean SG, McClure D, Mills NL, et al. 2009. Direct impairment of vascular function by diesel exhaust particulate through reduced bioavailability of endothelium-derived nitric oxide induced by superoxide free radicals. Environ Health Perspect 117:611–16
  • Miller R, Lenihan H, Muller E, Tseng N, Hanna S, Keller A. 2010. Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–34
  • Monn C, Becker S. 1999. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol Appl Pharmacol 155:245–52
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, et al. 2002. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–43
  • Pessayre D. 2007. Role of mitochondria in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 1:S20–7
  • Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L'Azou B. 2011. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10
  • Reed R, Ladner D, Higgins C, Westerhoff P, Ranville J. 2012. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31:93–9
  • Rognstad R. 1979. Rate-limiting steps in metabolic pathways. J Biol Chem 254:1875–8
  • Saquib Q, Al-Khedhairy A, Siddiqui M, Abou-Tarboush F, Azam A, Musarrat J. 2012. Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro 26:351–61
  • Sharma V, Anderson D, Dhawan A. 2011. Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). J Biomed Nanotechnol 7:98–9
  • Sharma V, Singh P, Pandey A, Dhawan A. 2012. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res 745:84–91
  • Sheline C, Behrens M, Choi D. 2000. Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. J Neurosci 20:3139–46
  • Stone V, Donaldson K. 2006. Nanotoxicology: signs of stress. Nat Nanotechnol 1:23–4
  • Stone V, Johnston H, Clift MJD. 2007. Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobioscience 6:331–40
  • Sun L, Li Y, Liu X, Jin M, Zhang L, Du Z, et al. 2011. Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol In Vitro 25:1619–29
  • Sutherland C, Tebbey PW, Granner DK. 1997. Oxidative and chemical stress mimic insulin by selectively inhibiting the expression of phosphoenolpyruvate carboxykinase in hepatoma cells. Diabetes 46:17–22
  • Sycheva L, Zhurkov V, Iurchenko V, Daugel-Dauge N, Kovalenko M, Krivtsova E, Durnev A. 2011. Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat Res 726:8–14
  • Tan HH, Fiel MI, Sun Q, Guo J, Gordon RE, Chen LC, et al. 2009. Kupffer cell activation by ambient air particulate matter exposure may exacerbate non-alcoholic fatty liver disease. J Immunotoxicol 6:266–75
  • Turrens J. 2003. Mitochondrial formation of reactive oxygen species. J Physiol 552:335–44
  • Wang Y, Aker W, Hwang H, Yedjou C, Yu H, Tchounwou P. 2011. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ 409:4753–62
  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von G. 2012. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–50
  • Williamson DH, Lund P, Krebs HA. 1967. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–27
  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, et al. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–34
  • Xia T, Korge P, Weiss JN, Li N, Venkatesen MI, Sioutas C, Nel A. 2004. Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ Health Perspect 112:1347–58

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.