276
Views
70
CrossRef citations to date
0
Altmetric
Original Article

ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris)

, , , , &
Pages 271-278 | Received 12 Jan 2014, Accepted 25 Feb 2014, Published online: 09 Apr 2014

References

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS. 2012. Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2:815–23
  • Alam S, Kamei S, Kawai S. 2001. Effect of iron deficiency on the chemical composition of the xylem sap of barley. Soil Sci Plant Nutr 47:643–9
  • Asli S, Neumann PM. 2009. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–84
  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick GR. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–50
  • Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH. 2011. Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27:6059–68
  • Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ. 2009. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 11:1079–91
  • Calder AJ, Dimkpa CO, McLean JE, Britt DW, Johnson W, Anderson AJ. 2012. Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci Total Environ 429:215–22
  • Chang Y-C, Zouari M, Gogorcena Y, Lucena JJ, Abadía J. 2003. Effects of cadmium and lead on ferric chelate reductase activities in sugar beet roots. Plant Physiol Biochem 41:999–1005
  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fert Soils 48:489–99
  • Chen Y, Jurkewitch E, Bar-Ness E, Hadar Y. 1994. Stability constants of pseudobactin complexes with transition metals. Soil Sci Soc Am J 58:390–6
  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, et al. 2008. 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 8:1067–77
  • Cline GR, Reid CPP, Powell PE, Szaniszlo PJ. 1984. Effects of a hydroxamate siderophore on iron absorption by sunflower and sorghum. Plant Physiol 76:36–9
  • Cohen CK, Norvell WA, Kochian LV. 1997. Induction of the root cell plasma membrane ferric reductase. An exclusive role for Fe and Cu. Plant Physiol 114:1061–9
  • Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML. 2003. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–10
  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E. 2008. Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–72
  • Dimkpa C, Weinand T, Asch F. 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–94
  • Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ. 2011. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with their metal ions. Environ Pollut 159:1749–56
  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ. 2012a. Bioactivity and biomodification of Ag, ZnO and CuO nanoparticles with relevance to plant performance in agriculture. Ind Biotechnol 8:344–57
  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, et al. 2012b. CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125
  • Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ. 2012c. Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium, Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78:1404–10
  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ. 2012d. CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer Pseudomonas chlororaphis O6. Nanotoxicology 6:635–42
  • Dimkpa CO, McLean JE, Britt DW, Johnson WP, Arey B, Lea SA, Anderson AJ. 2012e. Nano-specific inhibition of pyoverdine siderophore production in Pseudomonas chlororaphis O6 by CuO nanoparticles. Chem Res Toxicol 25:1066–74
  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ. 2013a. Fate of CuO and ZnO nano and micro particles in the plant environment. Environ Sci Technol 47:4734–42
  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ. 2013b. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–90
  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ. 2013c. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen, Fusarium graminearum. BioMetals 26:913–24
  • Fang T, Watson JL, Goodman J, Dimkpa CO, Martineau N, Das S, et al. 2013. Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads? Microbiol Res 168:91–8
  • Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ. 2009. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9
  • Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F. 2008. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? Biometals 21:211–17
  • Ghasemi-Fasaei R, Ronaghi A. 2008. Interaction of iron with copper, zinc, and manganese in wheat as affected by iron and manganese in a calcareous soil. J Plant Nutr 31:839–48
  • Glick GR. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–74
  • Han SH, Anderson AJ, Yang KY, Cho BH, Kim KY, Lee MC, et al. 2006. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. Mol Plant Pathol 7:463–72
  • Hannauer M, Braud A, Hoegy F, Ronot P, Boos A, Schalk IJ. 2012. The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ Microbiol 14:1696–708
  • Höfte M, Buysens S, Koedam N, Cornelis P. 1993. Zinc affects siderophore-mediated high-affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6:85–91
  • Jin CW, He YF, Tang CX, Wu P, Zheng SJ. 2006. Mechanism of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ 29:888–97
  • Johnson GV, Barton LL. 2007. Inhibition of iron deficiency stress response in cucumber by rare earth elements. Plant Physiol Biochem 45:302–8
  • Kahru A, Dubourguier H-C, Blinova I, Ivask A, Kasemets K. 2008. Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a mini review. Sensors 8:5153–70
  • Kim SA, Guerinot ML. 2007. Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–80
  • Kim S, Lee S, Lee I. 2012. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–806
  • Lee WL, Mahendra S, Alvarez PJJ. 2010. Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4:3580–90
  • Lee WM, Kwak JI, An YJ. 2012. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–9
  • Lin DH, Xing BS. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5
  • Lin D, Tian X, Wu F, Xing B. 2010. Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1896–908
  • Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT, et al. 2012. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784
  • Lucena C, Waters BM, Romera FJ, García MJ, Morales M, Alcántara E, Pérez-Vicente R. 2006. Ethylene could influence ferric reductase, iron transporter, and H+-ATPase gene expression by affecting FER (or FER-like) gene activity. J Exp Bot 57:4145–54
  • Martineau N, McLean JE, Dimkpa CO, Britt DW, Anderson AJ. 2014. Components from wheat roots modify the bioactivity of ZnO and CuO NPs in a soil bacterium. Environ Pollut 187:65–72
  • Morrissey J, Guerinot ML. 2009. Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–67
  • Nohynek GJ, Lademann J, Ribaud C, Roberts MS. 2007. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–77
  • Pan B, Xing B. 2012. Applications and implications of manufactured nanoparticles in soils: a review. Euro J Soil Sci 63:437–56
  • Pandey AC, Sanjay SS, Yadav RS. 2010. Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5:488–97
  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, et al. 2012. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109:2451–6
  • Rossbach S, Wilson TL, Kukuk ML, Carty HA. 2000. Elevated zinc induces siderophore biosynthesis genes and a zntA-like gene in Pseudomonas fluorescens. FEMS Microbiol Lett 191:61–70
  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y. 2012. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6:241–8
  • Sinclair SA, Krämer U. 2012. The zinc homeostasis network of land plants. Biochim Biophys Acta 1823:1553–67
  • Spencer M, Kim YC, Ryu CM, Kloepper J, Yang YC, Anderson AJ. 2003. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Mol Plant Microbe Interact 63:27–34
  • Tikhonovich IA, Provorov NA. 2011. Microbiology is the basis of sustainable agriculture: an opinion. Ann Appl Biol 159:155–68
  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P. 2007. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microbe Interact 20:441–7
  • Wang H, Kou X, Pei Z, Xial JQ, Shan X, Xing B. 2011. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42
  • Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, et al. 2013a. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and ag+ at sublethal concentrations. Environ Sci Technol 47:5442–9
  • Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, et al. 2013b. Fate of ZnO nanoparticles in soils and Cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.