1,672
Views
113
CrossRef citations to date
0
Altmetric
Original Article

Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles

, &
Pages 373-380 | Received 28 Jan 2014, Accepted 27 Jun 2014, Published online: 24 Jul 2014

References

  • ATSDR. 2004. Toxicological profile for iodine. Atlanta (GA): Agency for Toxic Substances and Disease Registry
  • Baan R, Straif K, Grosse Y, Secretan W, El Ghissassi F, Cogliano V. 2006. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 7:295–6
  • Bachler G, von Goetz N, Hungerbuhler K. 2013. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int J Nanomedicine 8:3365–82
  • Baek M, Chung HE, Yu J, Lee JA, Kim TH, Oh JM, et al. 2012. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomedicine 7:3081–97
  • BAuA. 2013. Toxic effects of various modifications of a nanoparticle following inhalation. German Federal Institute for Occupational Safety and Health: Research Project F2246. Dortmund/Berlin/Dresden, Germany
  • Champion JA, Walker A, Mitragotri S. 2008. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25:1815–21
  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. 2007. Renal clearance of quantum dots. Nat Biotechnol 25:1165–70
  • Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowski M, Krawczynska A, Chwastowska J, et al. 2012. Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol 32:920–8
  • EFSA. 2011. The EFSA comprehensive European food consumption database. [Online] Available at: http://www.efsa.europa.eu/en/datexfoodcdb/datexfooddb.htm. Accessed on August 08, 2013
  • EFSA. 2004. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food on a request from the commission related to the safety in use of rutile titanium dioxide as an alternative to the presently permitted anatase form. (EFSA-Q-2004-103). EFSA J 163:1–12
  • Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, van Ravenzwaay B. 2008. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 82:151–7
  • GEMS/Food-EURO. 1995. Reliable evaluation of low-level contamination of food. Report on a workshop in the frame of GEMS/Food-EURO 26–27 May 2005, Kulmbach, Germany. World Health Organization Regional Office for Europe: EUR/ICP/EHAZ.94.12/WS04. Geneva, Switzerland
  • Hagens WI, Oomen AG, De Jong WH, Cassee FR, Sips AJaM. 2007. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 49:217–29
  • Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schaffler M, et al. 2011. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77:407–16
  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–83
  • ILSI Risk Science Institute Workshop Participants. 2000. The relevance of the rat lung response to particle overload for human risk assessment: A workshop consensus report. ILSI risk science institute workshop participants. Inhal Toxicol 12:1–17
  • IPCS. 2010. The harmonization project document series No. 9 – Guidance on principles of characterizing and applying PBPK models in risk assessment. International Programme on Chemical Safety: WHO Library Cataloguing-in-Publication Data
  • Jiang J, Oberdorster G, Elder A, Gelein R, Mercer P, Biswas P. 2008. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42
  • Jin T, Berlin M. 2007. Titanium. In: Nordberg GF, Fowler BA, Nordberg M, & Friberg LT, eds. Handbook on the Toxicology of Metals. 3rd ed. Burlington: Academic Press, 861–70
  • Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, et al. 2008. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–83
  • Kreuter J. 2004. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 4:484–8
  • Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-De Jong A, Noorlander CW, et al. 2010. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31:8350–61
  • Laver M. 1997. Titanium dioxide whites. In: Fitzhugh EW, ed. Artists’ Pigments: A Handbook of their History and Characteristics. Vol. 3. Washington, USA: National Gallery of Art, 295–355
  • Lee KP, Trochimowicz HJ, Reinhardt CF. 1985. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol 79:179–92
  • Li M, Al-Jamal KT, Kostarelos K, Reineke J. 2010. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano 4:6303–17
  • Li M, Panagi Z, Avgoustakis K, Reineke J. 2012. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int J Nanomedicine 7:1345–56
  • Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao XY, Vogel U, et al. 2011. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:1–14
  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. 2006. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–52
  • Nestorov I. 2007. Whole-body physiologically based pharmacokinetic models. Expert Opin Drug Metab Toxicol 3:235–49
  • Oberdorster G, Ferin J, Lehnert BE. 1994. Correlation between particle-size, in-vivo particle persistence, and lung injury. Environ Health Perspect 102:173–9
  • Peters R, Kramer E, Oomen AG, Rivera ZE, Oegema G, Tromp PC, et al. 2012. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 6:2441–51
  • Sager TM, Kommineni C, Castranova V. 2008. Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol 5:17. doi: 10.1186/1743-8977-5-17
  • Saptarshi SR, Duschl A, Lopata AL. 2013. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11:1–12
  • Sayes CM, Wahi R, Kurian PA, Liu YP, West JL, Ausman KD, et al. 2006. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–85
  • SCCS 2013. Opinion on titanium dioxide (nano form) – European Commision: Scientific Committee on Consumer Safety: ND-AQ-13-007-EN-N. Luxembourg
  • Schmidt J, Vogelsberger W. 2006. Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. J Phys Chem B 110:3955–63
  • Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, et al. 2008. Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108–11
  • Shi H, Magaye R, Castranova V, Zhao J. 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15. doi: 10.1186/1743-8977-10-15
  • Shinohara N, Danno N, Ichinose T, Sasaki T, Fukui H, Honda K, Gamo M. 2014. Tissue distribution and clearance of intravenously administered titanium dioxide (TiO2) nanoparticles. Nanotoxicology 8:132–41
  • Simon GA, Maibach HI. 1998. Relevance of hairless mouse as an experimental model of percutaneous penetration in man. Skin Pharmacol Appl Skin Physiol 11:80–6
  • Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K. 2008. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloid Surface B 65:1–10
  • Sugibayashi K, Todo H, Kimura E. 2008. Safety evaluation of titanium dioxide nanoparticles by their absorption and elimination profiles. J Toxicol Sci 33:293–8
  • US-EPA. 2010. Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen – Environmental Protection Agency: EPA/600/R-09/057F. Research Triangle Park, USA
  • van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. 1972. The mononuclear phagocyte system: A new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46:845–52
  • van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L. 2009. Comparing fate and effects of three particles of different surface properties: nano-TiO2, pigmentary TiO2 and quartz. Toxicol Lett 186:152–9
  • von Goetz N, Lorenz C, Windler L, Nowack B, Heuberger M, Hungerbühler K. 2013. Migration of Ag- and TiO2-(nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environ Sci Technol 47:9979–87
  • Walczak AP, Fokkink R, Peters R, Tromp P, Herrera Rivera ZE, Rietjens IM, et al. 2013. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology 7:1198–210
  • Wang JJ, Sanderson BJS, Wang H. 2007b. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res – Genet Toxicol Environ Mutag 628:99–106
  • Wang JX, Chen CY, Liu Y, Jiao F, Li W, Lao F, et al. 2008. Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183:72–80
  • Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma YM, et al. 2007a. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–85
  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. 2012. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–50
  • Wu JH, Liu W, Xue CB, Zhou SC, Lan FL, Bi L, et al. 2009. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 191:1–8
  • Xie GP, Wang C, Sun J, Zhong GR. 2011. Tissue distribution and excretion of intravenously administered titanium dioxide nanoparticles. Toxicol Lett 205:55–61
  • Xu Y, Linares KA, Meehan K, Love BJ, Love NG. 2004. pH dependent change in the optical properties of surface modified gold nanoparticles using bovine serum albumin. NSTI Nanotech 2004, Technical Proceedings 1:15–18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.