1,474
Views
122
CrossRef citations to date
0
Altmetric
Original Article

Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity

, , , , , , & show all
Pages 453-461 | Received 13 May 2014, Accepted 07 Jul 2014, Published online: 05 Aug 2014

References

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. 2009. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–37
  • Anderson NL, Anderson NG. 2002. The human plasma proteome – history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–67
  • Bernabeu P, Caprani A. 1990. Influence of surface-charge on adsorption of fibrinogen and or albumin on a rotating-disk electrode of platinum and carbon. Biomaterials 11:258–64
  • Bhattacharjee S, Ershov D, Gucht J, Alink GM, Rietjens IM, Zuilhof H, et al. 2013. Surface charge-specific cytotoxicity and cellular uptake of tri-block copolymer nanoparticles. Nanotoxicology 7:71–84
  • Bouwmeester H, Poortman J, Peters RJ, Wijma E, Kramer E, Makama S, et al. 2011. Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5:4091–103
  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, et al. 2008. Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:241–58
  • Chen XM, Elisia I, Kitts DD. 2010. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design. J Pharmacol Toxicol Methods 61:334–42
  • Cho WS, Thielbeer F, Duffin R, Johansson EMV, Megson IL, MacNee W, et al. 2014. Surface functionalization affects the zeta potential, coronal stability and membranolytic activity of polymeric nanoparticles. Nanotoxicology 8:202–11
  • des Rieux A, Fievez V, Theate I, Mast J, Preat V, Schneider YJ. 2007. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur J Pharm Sci 30:380–91
  • des Rieux A, Ragnarsson EG, Gullberg E, Preat V, Schneider YJ, Artursson P. 2005. Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci 25:455–65
  • EFSA, Committee ES. 2011. Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J 9:2140–76
  • Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdorster G, McGrath JL. 2009. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30:603–10
  • Elbakry A, Wurster EC, Zaky A, Liebl R, Schindler E, Bauer-Kreisel P, et al. 2012. Layer-by-layer coated gold nanoparticles: size-dependent delivery of DNA into cells. Small 8:3847–56
  • Fazlollahi F, Angelow S, Yacobi NR, Marchelletta R, Yu AS, Hamm-Alvarez SF, et al. 2011. Polystyrene nanoparticle trafficking across MDCK-II. Nanomed: Nanotechnol, Biol Med 7:588–94
  • Fleischer CC, Payne CK. 2012. Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B 116:8901–7
  • Gessner A, Lieske A, Paulke BR, Muller RH. 2003. Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res A 65A:319–26
  • Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. 2000. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B, Biointerfaces 18:301–13
  • Hilgendorf C, Spahn-Langguth H, Regardh CG, Lipka E, Amidon GL, Langguth P. 2000. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharm Sci 89:63–75
  • Hussain N, Jaitley V, Florence AT. 2001. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 50:107–42
  • Jedlovszky-Hajdu A, Bombelli FB, Monopoli MP, Tombacz E, Dawson KA. 2012. Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo. Langmuir 28:14983–91
  • Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, et al. 2007. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 104:1482–7
  • Lee SH, Hoshino Y, Randall A, Zeng ZY, Baldi P, Doong RA, et al. 2012. Engineered synthetic polymer nanoparticles as IgG affinity ligands. J Am Chem Soc 134:15765–72
  • Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA. 2010. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 31:9511–18
  • Lundqvist M. 2013. Nanoparticles: tracking protein corona over time. Nat Nanotechnol 8:701–2
  • Lundqvist M, Stigler J, Cedervall T, Berggard T, Flanagan MB, Lynch I, et al. 2011. The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–9
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–70
  • Mahler GJ, Esch MB, Tako E, Southard TL, Archer SD, Glahn RP, et al. 2012. Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol 7:264–71
  • Meder F, Daberkow T, Treccani L, Wilhelm M, Schowalter M, Rosenauer A, et al. 2012. Protein adsorption on colloidal alumina particles functionalized with amino, carboxyl, sulfonate and phosphate groups. Acta Biomater 8:1221–9
  • Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, et al. 2011. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–34
  • Nkabinde LA, Shoba-Zikhali LNN, Semete-Makokotlela B, Kalombo L, Swai HS, Hayeshi R, et al. 2012. Permeation of PLGA nanoparticles across different in vitro models. Curr Drug Deliv 9:617–27
  • Nollevaux G, Deville C, El Moualij B, Zorzi W, Deloyer P, Schneider YJ, et al. 2006. Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21). BMC Cell Biol 7:20–31
  • Norris DA, Puri N, Sinko PJ. 1998. The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev 34:135–54
  • Oh E, Delehanty JB, Sapsford KE, Susumu K, Goswami R, Blanco-Canosa JB, et al. 2011. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano 5:6434–48
  • Oomen AG, Bos PM, Fernandes TF, Hund-Rinke K, Boraschi D, Byrne HJ, et al. 2014. Concern-driven integrated approaches to nanomaterial testing and assessment – report of the NanoSafety Cluster Working Group 10. Nanotoxicology 8:334–48
  • Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S, et al. 2014. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale 6:2782–92
  • Prijic S, Prosen L, Cemazar M, Scancar J, Romih R, Lavrencak J, et al. 2012. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials 33:4379–91
  • Rothen-Rutishauser B, Riesen FK, Braun A, Gunthert M, Wunderli-Allenspach H. 2002. Dynamics of tight and adherens junctions under EGTA treatment. J Membr Biol 188:151–62
  • Schubbe S, Schumann C, Cavelius C, Koch M, Muller T, Kraegeloh A. 2012. Size-dependent localization and quantitative evaluation of the intracellular migration of silica nanoparticles in Caco-2 cells. Chem Mater 24:914–23
  • Shang L, Nienhaus K, Nienhaus GU. 2014. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5–16
  • Sharma B, Peetla C, Adjei IM, Labhasetwar V. 2013. Selective biophysical interactions of surface modified nanoparticles with cancer cell lipids improve tumor targeting and gene therapy. Cancer Lett 334:228–36
  • Szentkuti L. 1997. Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus gel layer of the rat distal colon. J Control Release 46:233–42
  • Tedja R, Lim M, Amal R, Marquis C. 2012. Effects of serum adsorption on cellular uptake profile and consequent impact of titanium dioxide nanoparticles on human lung cell lines. ACS Nano 6:4083–93
  • Varela JA, Bexiga MG, Aberg C, Simpson JC, Dawson KA. 2012. Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. J Nanobiotechnol 10:39–45
  • Walczak AP, Fokkink R, Peters R, Tromp P, Herrera Rivera ZE, Rietjens IM, et al. 2013. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology 7:1198–210
  • Walter E, Janich S, Roessler BJ, Hilfinger JM, Amidon GL. 1996. HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro in vivo correlation with permeability data from rats and humans. J Pharm Sci 85:1070–6
  • Yang ZX, Kang SG, Zhou RH. 2014. Nanomedicine: de novo design of nanodrugs. Nanoscale 6:663–77
  • Yoncheva K, Gomez S, Campanero MA, Gamazo C, Irache JM. 2005. Bioadhesive properties of pegylated nanoparticles. Expert Opin Drug Deliv 2:205–18
  • Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing, II, Lin VS. 2011. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5:1366–75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.