405
Views
9
CrossRef citations to date
0
Altmetric
Short Communication

Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO2, SiO2 and carbon nanomaterials

, , , &
Pages 1-9 | Received 04 Apr 2014, Accepted 15 Oct 2014, Published online: 14 Nov 2014

References

  • Barrán-Berdón AL, Pozzi D, Caracciolo G, Capriotti AL, Caruso G, Cavaliere C, et al. 2013. Time evolution of nanoparticle–protein corona in human plasma: relevance for targeted drug delivery. Langmuir 29:6485–94
  • Deng ZJ, Liang MT, Monteiro M, Toth I, Minchin RF. 2011. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6:39–44
  • Doolittle RF. 2003. X-ray crystallographic studies on fibrinogen and fibrin. J Thromb Haemost 1:1559–65
  • Engberg AE, Rosengren-Holmberg JP, Chen H, Nilsson B, Lambris JD, Nicholls IA, et al. 2012. Blood protein-polymer adsorption: implications for understanding complement-mediated hemoincompatibility. J Biomed Mater Res A 97A:74–84
  • Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS. 2001. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17:2664–9
  • Fenoglio I, Fubini B, Ghibaudi EM, Turci F. 2011. Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Adv Drug Deliv Rev 63:1186–209
  • Fuss C, Palmaz JC, Sprague EA. 2001. Fibrinogen: structure, function, and surface interactions. J Vasc Interv Radiol 12:677–82
  • Galisteo F, Norde W. 1995. Protein adsorption at the agi-water interface. J Coll Inter Sci 172:502–9
  • Gerloff K, Fenoglio I, Carella E, Kolling J, Albrecht C, Boots AW, et al. 2012. Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells. Chem Res Toxicol 25:646–55
  • Ghigo D, Aldieri E, Todde R, Costamagna C, Garbarino G, Pescarmona G, et al. 1998. Chloroquine stimulates nitric oxide synthesis in murine, porcine, and human endothelial cells. J Clin Invest 102:595−605
  • Guadiz G, Sporn LA, Goss RA, Lawrence SO, Marder VJ, SimpsonHaidaris PJ. 1997. Polarized secretion of fibrinogen by lung epithelial cells. Am J Respir Cell Mol Biol 17:60–9
  • Gunawan C, Lim M, Marquis CP, Amal R. 2014. Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J Mater Chem B 2:2060–83
  • Jackson SP. 2007. The growing complexity of platelet aggregation. Blood 109:5087–95
  • Jones C, Campbell RA, Brooks AE, Assemi S, Tadjiki S, Thiagarajan G, et al. 2012. Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano 6:9900–10
  • Jung SY, Lim SM, Albertorio F, Kim G, Gurau MC, Yang RD, Holden MA, et al. 2003. The Vroman effect: a molecular level description of fibrinogen displacement. J Am Chem Soc 125:12782–6
  • Karmali PP, Simberg D. 2011. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8:343–57
  • Koo J, Rafailovich MH, Medved L, Tsurupa G, Kudryk B, Liu Y, et al. 2010. Evaluation of fibrinogen self-assembly: role of its alpha C region. J Thromb Haemost 8:2727–35
  • Lesniak A, Fenaroli F, Monopoli MR, Aberg C, Dawson KA, Salvati A. 2012. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–57
  • Lishko VK, Kudryk B, Yakubenko VP, Yee VC, Ugarova TP. 2002. Regulated unmasking of the cryptic binding site for integrin alpha(M)beta(2) in the gamma C-domain of fibrinogen. Biochemistry 41:12942–51
  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA. 2007. The nanoparticle – protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–35:167–74
  • Lynch I, Dawson KA. 2008. Protein–nanoparticle interactions. Nano Today 3:40–7
  • Lundqvist M, Stigler J, Elia J, Lynch I, Cedervall T, Dawson KA. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS 38:14265–70
  • Mao H, Chena W, Laurent S, Thirifays C, Burtea C, Rezaeed F, et al. 2013. Hard corona composition and cellular toxicities of the graphene sheets. Colloids Surf B: Biointerfaces 109:212–18
  • Marder VJ, Francis CW, Doolittle RF. 1982. Fibrinogen structure and physiology, hemostasis and thrombosis: basic principles and clinical prac. JB Lippincott Co
  • Marucco A, Fenoglio I, Turci F, Fubini B, IOP, 2013. Interaction of fibrinogen and albumin with titanium dioxide nanoparticles of different crystalline phases. Nanosafe 2012: international Conferences on Safe Production and Use of Nanomaterials, vol. 429:10, Grenoble, France
  • Marucco A, Turci F, O’Neill L, Byrne HJ, Fubini B, Fenoglio I. 2014. Hydroxyl density affects the interaction of fibrinogen with silica nanoparticles at physiological concentration. J Colloids Interface Sci 419:86–94
  • Mathias J, Wannemacher GJ. 1988. Basic characteristics and applications of aerosil:30. The chemistry and physics of the aerosil Surface. J Colloids Interface Sci 125:61–8
  • Mbawuike IN, Herscowitz B. 1989. MH-S, a murine alveolar macrophage cell-line – morphological, cytochemical, and functional-characteristics. J Leukoc Biol 46:119–27
  • Monteiro NA, Samberg ME, Oldenburg SJ, Riviere JE. 2013. Protein binding modulates the cellular uptake of silver nanoparticles into human cells: implications for in vitro to in vivo extrapolations? Toxicol Lett 220:286–93
  • Mortensen NP, Hurst GB, Wang W, Foster CM, Nallathamby PD, Retterer ST. 2013. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. Nanoscale 5:6372–80
  • Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T. 2007. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharmac 342:215–21
  • Norde W. 2008. My voyage of discovery to proteins in flatland…and beyond. Colloids Surf B: Biointerfaces 61:1–9
  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. 2005. Screening working, principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8–8
  • Owens III DA, Peppas NA. 2006. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102
  • Pery ARR, Brochot C, Hoet PHM, Nemmar A, Bois FY. 2009. Development of a physiologically based kinec model for 99m-Technetium-labelled carbon nanoparticles inhaled by humans. Inhal Toxicol 21:1099–107
  • Polimeni M, Gazzano E, Ghiazza M, Fenoglio I, Bosia A, Fubini B, et al. 2008. Quartz inhibits glucose 6-phosphate dehydrogenase in murine alveolar macrophages. Chem Res Toxicol 21:888–94
  • Plow EF, Hoover-Plow J. 2004. The functions of plasminogen in cardiovascular disease. Trends Cardiovasc Med 14:180–6
  • Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S, et al. 2014. Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale 6:2782–92
  • Prokop A, Davinson JM. 2008. Nanovehicular intracellular delivery systems. J Pharm Sci 97:3518–90
  • Rezwan K, Studart AR, Voros J, Gauckler LJ. 2005. Change of xi potential of biocompatible colloidal oxide particles upon adsorption of bovine serum albumin and lysozyme. J Phys Chem B 109:14469–74
  • Ruh H, Kuhl B, Brenner-Weiss G, Hopf C, Diabate S, Weiss C. 2012. Identification of serum proteins bound to industrial nanomaterials. Toxicol Lett 208:41–50
  • Savolainen K, Pylkkanen L, Norppa H, Falck G, Lindberg H, Tuomi T, et al. 2010. Nanotechnologies, engineered nanomaterials and occupational health and safety – a review. Safety Sci 48:957–63
  • Schrurs F, Lison D. 2012. Focusing the research effort. Nat Nanotechnol 7:546–8
  • Tang LP. 1998. Mechanisms of fibrinogen domains: biomaterial interactions. J Biomater Sci Polym Ed 9:1257–66
  • Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. 2013. Rapid formation of the plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–81
  • Thevenot P, Hu WJ, Tang LP. 2008. Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8:270–80
  • Tsurupa G, Hantgan RR, Burton RA, Pechik I, Tjandra N, Medved L. 2009. Structure, stability, and interaction of the fibrin(ogen) alpha C-domains. Biochemistry 48:12191–201
  • Tsurupa G, Medved L. 2001. Identification and characterization of novel tPA- and plasminogen-binding sites within fibrin(ogen) alpha C-domains. Biochemistry 40:801–8
  • Turci F, Ghibaudi E, Colonna M, Boscolo B, Fenoglio I, Fubini B. 2010. An integrated approach to the study of the interaction between proteins and nanoparticles. Langmuir 26:8336–46
  • Vilaseca P, Dawson KA, Franzese G. 2013. Understanding and modulating the competitive surface-adsorption of proteins through coarse-grained molecular dynamics simulations. Soft Matter 9:6978–85
  • Vroman L. 1962. Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196:476–7
  • Wertz CF, Santore MM. 2002. Fibrinogen adsorption on hydrophilic and hydrophobic surfaces: geometrical and energetic aspects of interfacial relaxations. Langmuir 18:706–15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.