2,839
Views
436
CrossRef citations to date
0
Altmetric
Review Article

Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review

, , , , &
Pages 257-278 | Received 16 Nov 2014, Accepted 28 Apr 2015, Published online: 11 Jun 2015

References

  • Al-Salim N, Barraclough E, Burgess E, Clothier B, Deurer M, Green S, et al. 2011. Quantum dot transport in soil, plants, and insects. Sci Total Environ 409:3237–48
  • Albersheim P. 2011. Plant Cell Walls: From Chemistry to Biology. New York, USA: Garland Science
  • Arias JA, Peralta-Videa JR, Ellzey JT, Viveros MN, Ren M, Mokgalaka-Matlala NS, et al. 2010. Plant growth and metal distribution in tissues of Prosopis juliflora-velutina grown on chromium contaminated soil in the presence of Glomus deserticola. Environ Sci Technol 44:7272–9
  • Asli S, Neumann PM. 2009. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–84
  • Aubert T, Burel A, Esnault MA, Cordier S, Grasset F, Cabello-Hurtado F. 2012. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. J Hazard Mater 219:111–18
  • Avanasi R, Jackson WA, Sherwin B, Mudge JF, Anderson TA. 2014. C60 fullerene soil sorption, biodegradation, and plant uptake. Environ Sci Technol 48:2792–7
  • Ayache J, Beaunier L, Boumendil J, Ehret G, Laub D. 2010. Artifacts in Transmission Electron Microscopy. New York, USA: Springer
  • Aznar A, Chen NWG, Rigault M, Riache N, Joseph D, Desmaele D, et al. 2014. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores. Plant Physiol 164:2167–83
  • Badireddy AR, Farner Budarz J, Marinakos SM, Chellam S, Wiesner MR. 2014. Formation of silver nanoparticles in visible light-illuminated waters: mechanism and possible impacts on the persistence of AgNPs and bacterial lysis. Environ Eng Sci 31:338–49
  • Badireddy AR, Wiesner MR, Liu J. 2012. Detection, characterization, and abundance of engineered nanoparticles in complex waters by hyperspectral imagery with enhanced darkfield microscopy. Environ Sci Technol 46:10081–8
  • Baken S, Nawara S, Van Moorleghem C, Smolders E. 2014. Iron colloids reduce the bioavailability of phosphorus to the green alga Raphidocelis subcapitata. Water Res 59:198–206
  • Baldi F, Minacci A, Saliot A, Mejanelle L, Mozetic P, Turk V, et al. 1997. Cell lysis and release of particulate polysaccharides in extensive marine mucilage assessed by lipid biomarkers and molecular probes. Mar Ecol Prog Ser 153:45–57
  • Bar-Zeev E, Passow U, Romero-Vargas Castrillón S, Elimelech M. 2015. Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling. Environ Sci Technol 49:691–707
  • Basavaraju P, Shetty NP, Shetty HS, De Neergaard E, Jørgensen HJL. 2009. Infection biology and defence responses in sorghum against Colletotrichum sublineolum. J Appl Microbiol 107:404–15
  • Battke F, Leopold K, Maier M, Schmidhalter U, Schuster M. 2008. Palladium exposure of barley: uptake and effects. Plant Biol (Berlin, Germany) 10:272–6
  • Bauer P, Elbaum R, Weiss IM. 2011. Calcium and silicon mineralization in land plants: transport, structure and function. Plant Sci 180:746–56
  • Belimov AA, Dietz K-J. 2000. Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol Res 155:113–21
  • Bhirde A, Xie J, Swierczewska M, Chen X. 2011. Nanoparticles for cell labeling. Nanoscale 3:142–53
  • Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Günther D, et al. 2010. No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44:8718–23
  • Bonneville S, Smits MM, Brown A, Harrington J, Leake JR, Brydson R, et al. 2009. Plant-driven fungal weathering: early stages of mineral alteration at the nanometer scale. Geology 37:615–18
  • Brandenberger C, Clift MJD, Gehr P, Muhlfeld C, Rothen-Rutishauser B, Stone V, et al. 2010. Intracellular imaging of nanoparticles: is it an elemental mistake to believe what you see? Part Fibre Technol 7:15
  • Buick RD, Buchan GD, Field RJ. 1993. The role of surface-tension of spreading droplets in absorption of a herbicide formulation via leaf stomata. Pestic Sci 38:227–35
  • Burken JG, Schnoor JL. 1997. Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–406
  • Burkhardt J, Basi S, Pariyar S, Hunsche M. 2012. Stomatal penetration by aqueous solutions – an update involving leaf surface particles. New Phytol 196:774–87
  • Burkhardt J, Kaiser H, Kappen L, Goldbach HE. 2001. The possible role of aerosols on stomatal conductivity for water vapour. Basic Appl Ecol 2:351–64
  • Calabrese EJ. 2005. Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollut (Oxford, UK) 138:378–411
  • Canas JE, Long MQ, Nations S, Vadan R, Dai L, Luo MX, et al. 2008. Effects of functionalized and nonfunctionalized single–walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–31
  • Carpita N, Sabularse D, Montezinos D, Delmer DP. 1979. Determination of the pore-size of cell-walls of living plant-cells. Science 205:1144–7
  • Carpita NC, Gibeaut DM. 1993. Structural models of primary-cell walls in flowering plants – consistency of molecular-structure with the physical-properties of the walls during growth. Plant J 3:1–30
  • Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, et al. 2010. Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6:612–17
  • Cherchi C, Chernenko T, Diem M, Gu AZ. 2011. Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol Chem 30:861–9
  • Choat B, Cobb AR, Jansen S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177:608–26
  • Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM. 2004. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. J Exp Bot 55:1569–75
  • Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ricardo Ibarra M, Rubiales D, et al. 2010. Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8:26
  • Colman BP, Espinasse B, Richardson CJ, Matson CW, Lowry GV, Hunt DE, et al. 2014. Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ Sci Technol 48:5229–36
  • Colvin VL. 2003. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–70
  • Corredor E, Testillano PS, Coronado M-J, Gonzalez-Melendi P, Fernandez-Pacheco R, Marquina C, et al. 2009. Nanoparticle penetration and transport in living pumpkin plants: In situ subcellular identification. BMC Plant Biol 9:1–11
  • Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ. 2009. Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–9
  • De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, et al. 2013. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–47
  • Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M, et al. 2011. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156:1364–74
  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, et al. 1996. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–33
  • Dietz K-J, Herth S. 2011. Plant nanotoxicology. Trends Plant Sci 16:582–9
  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ. 2015. Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–29
  • Driouich A, Follet-Gueye ML, Vicre-Gibouin M, Hawes M. 2013. Root border cells and secretions as critical elements in plant host defense. Curr Opin Plant Biol 16:489–95
  • Duran P, Acuna JJ, Jorquera MA, Azcon R, Borie F, Cornejo P, et al. 2013. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: a preliminary study as a potential Se biofortification strategy. J Cereal Sci 57:275–80
  • Eichert T, Goldbach HE. 2008. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces – further evidence for a stomatal pathway. Physiol Plant 132:491–502
  • Eichert T, Kurtz A, Steiner U, Goldbach HE. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–60
  • Ek KH, Morrison GM, Rauch S. 2004. Environmental routes for platinum group elements to biological materials – a review. Sci Total Environ 334:21–38
  • Emerson D, Weiss JV, Megonigal JP. 1999. Iron-oxidizing bacteria are associated with ferric hydroxide precipitates (Fe-plaque) on the roots of wetland plants. Appl Environ Microbiol 65:2758–61
  • Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP. 2006. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signaling Behav 1:196–200
  • Fahn A. 1982. Plant Anatomy. Oxford, UK & New York, USA: Pergamon Press
  • Farmer AM. 1993. The effects of dust on vegetation – a review. Environ Pollut (Oxford, U K) 79:63–75
  • Feng YZ, Cui XC, He SY, Dong G, Chen M, Wang JH, et al. 2013. The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–504
  • Fisk HJ, Dandekar AM. 1993. The introduction and expression of transgenes in plants. Sci Hortic (Amsterdam, Netherlands) 55:5–36
  • Fitzpatrick KL, Reid RJ. 2009. The involvement of aquaglyceroporins in transport of boron in barley roots. Plant Cell Environ 32:1357–65
  • Frame BR, Zhang H, Cocciolone SM, Sidorenko LV, Dietrich CR, Pegg SE, et al. 2000. Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol Plant 36:21–9
  • Gaff DF, Chamiiers TC, Maekus K. 1964. Studies of extrafascicular movement of water in the leaf. Aust J Biol Sci 17:581–8
  • Galway ME. 2006. Root hair cell walls: filling in the framework. Can J Bot 84:613–21
  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M. 2003. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–61
  • Gardea-Torresdey JL, Rico CM, White JC. 2014. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–40
  • Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li KG, et al. 2013. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–37
  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M. 2013. Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–52
  • Glenn JB, White SA, Klaine SJ. 2012. Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Environ Toxicol Chem 31:194–201
  • Gottschalk F, Nowack B. 2011. The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–55
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–22
  • Greve D, Stelzer R, Georgi B. 1987. The uptake of aerosols through lenticels. J Aerosol Sci 18:833–6
  • Guo J, Chi J. 2014. Effect of Cd-tolerant plant growth-promoting Rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375:205–14
  • Hagel JM, Yeung EC, Facchini PJ. 2008. Got milk? The secret life of laticifers. Trends Plant Sci 13:631–9
  • Handy RD, Owen R, Valsami-Jones E. 2008a. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–25
  • Handy RD, von der Kammer F, Lead JR, Hassellov M, Owen R, Crane M. 2008b. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314
  • Hansel CM, Fendorf S, Sutton S, Newville M. 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol 35:3863–8
  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X. 2000. The role of root border cells in plant defense. Trends Plant Sci 5:128–33
  • Hendren CO, Mesnard X, Dröge J, Wiesner MR. 2011. Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–9
  • Hirano T, Kiyota M, Aiga I. 1995. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ Pollut (Oxford, UK) 89:255–61
  • Hochella Jr MF, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, et al. 2008. Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–5
  • Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonjo J, et al. 2014. Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376–85
  • Horst WJ, Wagner A, Marschner H. 1982. Mucilage protects root-meristems from aluminum injury. Z Pflanzenphysiol 105:435–44
  • Hu Y, Li J, Ma L, Peng QL, Feng W, Zhang L, et al. 2010. High efficiency transport of quantum dots into plant roots with the aid of Silwet L-77. Plant Physiol Biochem 48:703–9
  • Huang J. 1986. Ultrastructure of bacterial penetration in plants. Annu Rev Mater Res 24:141–57
  • Huang X, Stein BD, Cheng H, Malyutin A, Tsvetkova IB, Baxter DV, et al. 2011. Magnetic virus-like nanoparticles in N. benthamiana plants: a new paradigm for environmental and agronomic biotechnological research. ACS Nano 5:4037–45
  • Husen A, Siddiqi KS. 2014. Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16
  • Hussain HI, Yi ZF, Rookes JE, Kong LXX, Cahill DM. 2013. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15:1676
  • Hyung H, Fortner JD, Hughes JB, Kim J-H. 2006. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–84
  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kuhnel D, Jensen KA, et al. 2013. Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154
  • Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN. 2013. Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremediat 15:142–53
  • Jansen S, Choat B, Pletsers A. 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96:409–19
  • Jares-Erijman EA, Jovin TM. 2003. FRET imaging. Nat Biotechnol 21:1387–395
  • Jiang C, Hsu-Kim H. 2014. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry. Environ Sci Processes Impacts 16:2536–44
  • Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM. 2012. Bioavailability of gold nanomaterials to plants: Importance of particle size and surface coating. Environ Sci Technol 46:8467–74
  • Kadar E, Rooks P, Lakey C, White DA. 2012. The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17
  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H. 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–35
  • Kim J-H, Lee Y, Kim E-J, Gu S, Sohn EJ, Seo YS, et al. 2014. Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–85
  • Kim J-Y. 2005. Regulation of short-distance transport of RNA and protein. Curr Opin Plant Biol 8:45–52
  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–51
  • Koelmel J, Leland T, Wang HH, Amarasiriwardena D, Xing BS. 2013. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut (Oxford, UK) 174:222–8
  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, et al. 2013. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37
  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu JJ, et al. 2010. Uptake and distribution of ultrasmall anatase TiO2 Alizarin Red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–302
  • Larran S, Perelló A, Simón MR, Moreno V. 2007. The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23:565–72
  • Larue C, Castillo-Michel H, Sobanska S, Cecillon L, Bureau S, Barthes V, et al. 2014a. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106
  • Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cecillon L, et al. 2014b. Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26
  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A-M, et al. 2012a. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208
  • Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, et al. 2012b. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227:155–63
  • Lecoanet HF, Bottero JY, Wiesner MR. 2004. Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–9
  • Lee J-Y, Lu H. 2011. Plasmodesmata: the battleground against intruders. Trends Plant Sci 16:201–10
  • Lee S, Kim S, Kim S, Lee I. 2013. Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res 20:848–54
  • Lee W-M, An Y-J, Yoon H, Kweon H-S. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–21
  • Li X, Gui X, Rui Y, Ji W, Van Nhan L, Yu Z, et al. 2014. Bt-transgenic cotton is more sensitive to CeO2 nanoparticles than its parental non-transgenic cotton. J Hazard Mater 274:173–80
  • Liese W, Johann I. 1954. Experimentelle Untersuchungen über die Feinstruktur der Hoftüpfel bei den Koniferen. Naturwissenschaften 41:579
  • Lin DH, Xing BS. 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut (Oxford, UK) 150:243–50
  • Lin SJ, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, et al. 2009. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–32
  • Liu Q, Zhao Y, Wan Y, Zheng J, Zhang X, Wang C, et al. 2010. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4:5743–8
  • Liu QL, Chen B, Wang QL, Shi XL, Xiao ZY, Lin JX, et al. 2009. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–10
  • Lombi E, Scheckel KG, Kempson IM. 2011. In situ analysis of metal(loid)s in plants: state of the art and artefacts. Environ Exp Bot 72:3–17
  • Lu PT, Cao JP, He SG, Liu JP, Li HM, Cheng GP, et al. 2010. Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol Technol 57:196–202
  • Lucas WJ, Jung-Youn L. 2004. Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712–26
  • Łukaszuk E, Ciereszko I. 2012. Plant responses to wounding stress. In: Łaska G, ed. Biological Diversity – From Cell to Ecosystem. Białystok, Poland: Polish Botanical Society, 73–85
  • Luttge U. 1971. Structure and function of plant glands. Annu Rev Plant Physiol 22:23–44
  • Lv JT, Zhang SZ, Luo L, Zhang J, Yang K, Christie P. 2015. Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano 2:68–77
  • Ma JF, Yamaji N. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–7
  • Ma S, Lin DH. 2013. The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci Processes Impacts 15:145–60
  • Ma XM, Geisler-Lee J, Deng Y, Kolmakov A. 2010a. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–61
  • Ma XM, Gurung A, Deng Y. 2013. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–9
  • Ma Y, He X, Zhang P, Zhang Z, Guo Z, Tai R, et al. 2011. Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5:743–53
  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, et al. 2010b. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–9
  • Marchiol L, Mattiello A, Poscic F, Giordano C, Musetti R. 2014. In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res Lett 9:101
  • Mateos PF, Baker DL, Petersen M, Velazquez E, et al. 2001. Erosion of root epidermal cell walls by Rhizobium polysaccharide-degrading enzymes as related to primary host infection in the Rhizobium-legume symbiosis. Can J Microbiol 47:475–87
  • McCann MC, Wells B, Roberts K. 1990. Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96:323–34
  • McKenzie BM, Mullins CE, Tisdall JM, Bengough AG. 2013. Root-soil friction: quantification provides evidence for measurable benefits for manipulation of root-tip traits. Plant Cell Environ 36:1085–92
  • McNear Jr DH. 2013. The rhizosphere – roots, soil and everything in between. Nat Educ Knowl 4:1. Available at: http://www.nature.com/scitable/knowledge/library/the-rhizosphere-roots-soil-and-67500617. Accessed on 29 October 2014
  • Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo ZP, Quigg A, et al. 2009. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut (Oxford, UK) 157:3034–41
  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–44
  • Miralles P, Church TL, Harris AT. 2012a. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–39
  • Miralles P, Johnson E, Church TL, Harris AT. 2012b. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–27
  • Moore KL, Lombi E, Zhao FJ, Grovenor CRM. 2012. Elemental imaging at the nanoscale: nanoSIMS and complementary techniques for element localisation in plants. Anal Bioanal Chem 402:3263–73
  • Moscatelli A, Ciampolini F, Rodighiero S, Onelli E, Cresti M, Santo N, et al. 2007. Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J Cell Sci 120:3804–19
  • Mueller WEG. 2011. Molecular Biomineralization – Aquatic Organisms Forming Extraordinary Materials. Heidelberg, Germany & New York, USA: Springer
  • Nadiminti PP, Dong YD, Sayer C, Hay P, Rookes JE, Boyd BJ, et al. 2013. Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals. ACS Appl Mater Interfaces 5:1818–26
  • Nair R, Poulose A, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS. 2011. Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21:2057–68
  • Navarro DA, Bisson MA, Aga DS. 2012. Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211:427–35
  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, et al. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–86
  • Neinhuis C, Barthlott W. 1997. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot (Oxford, UK) 79:667–77
  • Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV. 2011. Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42:458–63
  • Nielsen HD, Berry LS, Stone V, Burridge TR, Fernandes TF. 2008. Interactions between carbon black nanoparticles and the brown algae Fucus serratus: inhibition of fertilization and zygotic development. Nanotoxicology 2:88–97
  • Nowack B, Schulin R, Robinson BH. 2006. Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–32
  • Oades JM. 1993. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377–400
  • Onelli E, Prescianotto-Baschong C, Caccianiga M, Moscatelli A. 2008. Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot 59:3051–68
  • Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, et al. 2011. Global patterns of leaf mechanical properties. Ecol Lett 14:301–12
  • Parsons JG, Lopez ML, Gonzalez CM, Peralta-Videa JR, Gardea-Torresdey JL. 2010. Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29:1146–54
  • Petersen EJ, Henry TB, Zhao J, MacCuspie RI, Kirschling TL, Dobrovolskaia MA, et al. 2014. Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol 48:4226–46
  • Piccapietra F, Allue CG, Sigg L, Behra R. 2012. Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46:7390–7
  • Pokhrel LR, Dubey B. 2013. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452:321–32
  • Quigg A, Chin W-C, Chen C-S, Zhang S, Jiang Y, Miao A-J, et al. 2013. Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustainable Chem Eng 1:686–702
  • Ranathunge K, Steudle E, Lafitte R. 2005. Blockage of apoplastic bypass-flow of water in rice roots by insoluble salt precipitates analogous to a Pfeffer cell. Plant Cell Environ 28:121–33
  • Raven JA. 2003. Long-distance transport in non-vascular plants. Plant Cell Environ 26:73–85
  • Raven JA, Handley LL. 1987. Transport processes and water relations. New Phytol 106:217–33
  • Richmond KE, Sussman M. 2003. Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–72
  • Rico CM, Hong J, Morales MI, Zhao LJ, Barrios AC, Zhang JY, et al. 2013. Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–42
  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–98
  • Rivlin PK, Raymond PA. 1987. Use of osmium tetroxide-potassium ferricyanide in reconstructing cells from serial ultrathin sections. J Neurosci Methods 20:23–33
  • Robards AW. 1975. Plasmodesmata. Annu Rev Plant Physiol 26:13–29
  • Roberts AG, Oparka KJ. 2003. Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–24
  • Ruffini Castiglione M, Cremonini R. 2009. Nanoparticles and higher plants. Caryologia 62:161–5
  • Šamaj J. 2012. Endocytosis in Plants. Berlin & Heidelberg, Germany: Springer
  • Sánchez-Serrano JJ. 2001. Plant responses to wounding. eLS – Encyclopedia of Life Sciences. Available at: https://doi.org/http://dx.doi.org/10.1038/npg.els.0001321. Accessed on 29 October 2014
  • Santner J, Smolders E, Wenzel WW, Degryse F. 2012. First observation of diffusion-limited plant root phosphorus uptake from nutrient solution. Plant Cell Environ 35:1558–66
  • Sarret G, Smits E, Michel HC, Isaure MP, Zhao FJ, Tappero R. (2013). Use of synchrotron–based techniques to elucidate metal uptake and metabolism in plants. In: Sparks DL, ed. Advances in Agronomy, Vol 119. San Diego, CA: Elsevier/Academic Press, 1–82
  • Sattelmacher B, Horst WJ. 2007. The Apoplast of Higher Plants: Compartment of Storage, Transport and Reactions – The Significance of the Apoplast for the Mineral Nutrition of Higher Plants. Dordrecht, Netherlands: Springer
  • Schaller J, Brackhage C, Paasch S, Brunner E, Baucker E, Dudel EG. 2013. Silica uptake from nanoparticles and silica condensation state in different tissues of Phragmites australis. Sci Total Environ 442:6–9
  • Scheringer M. 2008. Nanoecotoxicology: environmental risks of nanomaterials. Nat Nanotechnol 3:322–3
  • Scholthof HB. 2005. Plant virus transport: motions of functional equivalence. Trends Plant Sci 10:376–82
  • Schreiber L. 2005. Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot (Oxford, UK) 95:1069–73
  • Schreiber L, Elshatshat S, Koch K, Lin JX, Santrucek J. 2006. AgCl precipitates in isolated cuticular membranes reduce rates of cuticular transpiration. Planta 223:283–90
  • Schützendübel A, Polle A. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–65
  • Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, et al. 2013. Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol 47:7012–19
  • Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, et al. 2011. Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45:6136–44
  • Schwab F, Camenzuli L, Knauer K, Nowack B, Magrez A, Sigg L, et al. 2014. Sorption kinetics and equilibrium of the herbicide diuron to carbon nanotubes or soot in absence and presence of algae. Environ Pollut (Oxford, UK) 192:147–53
  • Schwabe F, Schulin R, Limbach LK, Stark W, Bürge D, Nowack B. 2013. Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512–20
  • Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, von Quadt A, et al. 2015. Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics 7:466–77
  • Schwyzer I, Kaegi R, Sigg L, Nowack B. 2013. Colloidal stability of suspended and agglomerate structures of settled carbon nanotubes in different aqueous matrices. Water Res 47:3910–20
  • Schwyzer I, Kaegi R, Sigg L, Smajda R, Magrez A, Nowack B. 2012. Long-term colloidal stability of 10 carbon nanotube types in the absence/presence of humic acid and calcium. Environ Pollut (Oxford, UK) 169:64–73
  • Sculthorpe CD. 1967. The Biology of Aquatic Vascular Plants. London, UK: Edward Arnold
  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, et al. 2011. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–9
  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL. 2012. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–43
  • Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L, et al. 2013. Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–8
  • Shen C-X, Zhang Q-F, Li J, Bi F-C, Yao N. 2010. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97:1602–9
  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. 2005. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–54
  • Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, et al. 2011. Multi-walled carbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3:99–106
  • Sokołowska K, Sowiński P. 2013. Symplasmic Transport in Vascular Plants. New York, USA: Springer
  • Sun D, Hussain H, Yi Z, Siegele R, Cresswell T, Kong L, et al. 2014. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–402
  • Taylor AF, Rylott EL, Anderson CWN, Bruce NC. 2014. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9:e93793
  • Tepeer M, Taylor IEP. 1981. The permeability of plant cell walls as measured by gel filtration chromatography. Science 213:761–3
  • Therezien M, Thill A, Wiesner MR. 2014. Importance of heterogeneous aggregation for NP fate in natural and engineered systems. Sci Total Environ 485–486:309–18
  • Thuesombat P, Hannongbua S, Akasit S, Chadchawan S. 2014. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–9
  • Torney F, Trewyn BG, Lin VSY, Kan W. 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300
  • Tufekci V, Balkis N, Beken CP, Ediger D, Mantikci M. 2010. Phytoplankton composition and environmental conditions of a mucilage event in the Sea of Marmara. Turk J Biol 34:199–210
  • Tyerman SD, Niemietz CM, Bramley H. 2002. Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–94
  • USEPA. (1996). The metals translator: Guidance for calculating a total recoverable permit limit from a dissolved criterion. In Water Quality Models. Washington DC, USA: US Environmental Protection Agency (USEPA)
  • Uzu G, Sobanska S, Sarret G, Muñoz M, Dumat C. 2010. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44:1036–42
  • Van Lehn RC, Atukorale PU, Carney RP, Yang Y-S, Stellacci F, Irvine DJ, et al. 2013. Effect of particle diameter and surface composition on the spontaneous fusion of monolayer-protected gold nanoparticles with lipid bilayers. Nano Lett 13:4060–7
  • Van Moorleghem C, De Schutter N, Smolders E, Merckx R. 2013. The bioavailability of colloidal and dissolved organic phosphorus to the alga Pseudokirchneriella subcapitata in relation to analytical phosphorus measurements. Hydrobiologia 709:41–53
  • Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, et al. 2014. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–8
  • Veraverbeke EA, Verboven P, Scheerlinck N, Lan Hoang M, Nicolaï BM. 2003. Determination of the diffusion coefficient of tissue, cuticle, cutin and wax of apple. J Food Eng 58:285–94
  • Verma A, Stellacci F. 2010. Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21
  • Verma A, Uzun O, Hu Y, Hu Y, Han H-S, Watson N, et al. 2008. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7:588–95
  • Verneuil L, Silvestre J, Mouchet F, Flahaut E, Boutonnet J-C, Bourdiol F, et al. 2014. Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea: “A sticky story”. Nanotoxicology 9:219–29
  • Vervaeke P, Tack FMG, Lust N, Verloo M. 2004. Short- and longer-term effects of the willow root system on metal extractability in contaminated dredged sediment. J Environ Qual 33:976–83
  • Voigt CA. 2014. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Front Plant Sci 5:1–6
  • von Moos N, Bowen P, Slaveykova VI. 2014. Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater. Environ Sci Nano 1:214–32
  • Vymazal J. 1995. Algae and Element Cycling in Wetlands. Boca Raton, USA: Lewis Publishers
  • Wagner GJ. 1991. Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–9
  • Walker TS, Bais HP, Grotewold E, Vivanco JM. 2003. Root exudation and rhizosphere biology. Plant Physiol 132:44–51
  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B. 2011a. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42
  • Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang QB, et al. 2013a. Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47:5442–9
  • Wang J, Yang Y, Zhu H, Braam J, Schnoor JL, Alvarez PJJ. 2014. Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings. Environ Sci Technol 48:6754–62
  • Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, et al. 2013b. Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–30
  • Wang Q, Ma X, Zhang W, Pei H, Chen Y. 2012a. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–12
  • Wang SH, Kurepa J, Smalle JA. 2011b. Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34:811–20
  • Wang WN, Tarafdar JC, Biswas P. 2013c. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1–13
  • Wang Y, Miao AJ, Luo J, Wei ZB, Zhu JJ, Yang LY. 2013d. Bioaccumulation of CdTe quantum dots in a freshwater alga Ochromonas danica: a kinetics study. Environ Sci Technol 47:10601–10
  • Wang Y-C, Klein T, Fromm M, Cao J, Sanford J, Wu R. 1988. Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Mol Biol 11:433–9
  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, et al. 2012b. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–41
  • White RG, Badelt K, Overall RL, Vesk M. 1994. Actin associated with plasmodesmata. Protoplasma 180:169–84
  • Whiteside MD, Treseder KK, Atsatt PR. 2009. The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90:100–8
  • Wiesner MR, Lowry GV, Jones KL, Hochella JMF, Di Giulio RT, Casman E, et al. 2009. Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43:6458–62
  • Wild E, Dent J, Thomas GO, Jones KC. 2005. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ Sci Technol 39:3695–702
  • Wild E, Jones KC. 2009. Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–4
  • Wilkinson KJ, Negre JC, Buffle J. 1997. Coagulation of colloidal material in surface waters: the role of natural organic matter. J Contam Hydrol 26:229–43
  • Willats WG, McCartney L, Mackie W, Knox JP. 2001. Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27
  • Wu J-W, Shi Y, Zhu Y-X, Wang Y-C, Gong H-J. 2013. Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23:815–25
  • Xia B, Dong C, Zhang WY, Lu Y, Chen JH, Shi JS. 2013. Highly efficient uptake of ultrafine mesoporous silica nanoparticles with excellent biocompatibility by Liriodendron hybrid suspension cells. Sci China Life Sci 56:82–9
  • Yamaji N, Ma JF. 2014. The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci 19:556–63
  • Yang XJ, Baskin JM, Baskin CC, Huang ZY. 2012. More than just a coating: ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspect Plant Ecol Evol Syst 14:434–42
  • Yin LY, Cheng YW, Espinasse B, Colman BP, Auffan M, Wiesner M, et al. 2011. More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–7
  • Zangi R, Filella M. 2012. Transport routes of metalloids into and out of the cell: a review of the current knowledge. Chem Biol Interact 197:47–57
  • Zhai G, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL. 2014. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146–51
  • Zhang C, Wang L, Nie Q, Zhang W, Zhang F. 2008. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–7
  • Zhang M, Ellis EA, Cisneros-Zevallos L, Akbulut M. 2012a. Uptake and translocation of polymeric nanoparticulate drug delivery systems into ryegrass. RSC Adv 2:9679–86
  • Zhang P, Ma YH, Zhang ZY, He X, Guo Z, Tai RZ, et al. 2012b. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46:1834–41
  • Zhang ZY, He X, Zhang HF, Ma YH, Zhang P, Ding YY, et al. 2011. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–22
  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, et al. 2012a. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8
  • Zhao LJ, Peralta-Videa JR, Peng B, Bandyopadhyay S, Corral-Diaz B, Osuna-Avila P, et al. 2014. Alginate modifies the physiological impact of CeO2 nanoparticles in corn seedlings cultivated in soil. J Environ Sci 26:382–9
  • Zhao LJ, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li CQ, Zhang JY, et al. 2012b. Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225:131–8
  • Zhu H, Han J, Xiao JQ, Jin Y. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–17
  • Zhu ZJ, Wang HH, Yan B, Zheng H, Jiang Y, Miranda OR, et al. 2012. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.